Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Nov-Dec;121(11-12):1245-52.
doi: 10.1289/ehp.1306967. Epub 2013 Aug 9.

Research on the premotor symptoms of Parkinson's disease: clinical and etiological implications

Affiliations
Review

Research on the premotor symptoms of Parkinson's disease: clinical and etiological implications

Honglei Chen et al. Environ Health Perspect. 2013 Nov-Dec.

Abstract

Background: The etiology and natural history of Parkinson's disease (PD) are not well understood. Some non-motor symptoms such as hyposmia, rapid eye movement sleep behavior disorder, and constipation may develop during the prodromal stage of PD and precede PD diagnosis by years.

Objectives: We examined the promise and pitfalls of research on premotor symptoms of PD and developed priorities and strategies to understand their clinical and etiological implications.

Methods: This review was based on a workshop, Parkinson's Disease Premotor Symptom Symposium, held 7-8 June 2012 at the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina.

Discussion: Research on premotor symptoms of PD may offer an excellent opportunity to characterize high-risk populations and to better understand PD etiology. Such research may lead to evaluation of novel etiological hypotheses such as the possibility that environmental toxicants or viruses may initiate PD pathogenesis in the gastrointestinal tract or olfactory bulb. At present, our understanding of premotor symptoms of PD is in its infancy and faces many obstacles. These symptoms are often not specific to PD and have low positive predictive value for early PD diagnosis. Further, the pathological bases and biological mechanisms of these premotor symptoms and their relevance to PD pathogenesis are poorly understood.

Conclusion: This is an emerging research area with important data gaps to be filled. Future research is needed to understand the prevalence of multiple premotor symptoms and their etiological relevance to PD. Animal experiments and mechanistic studies will further understanding of the biology of these premotor symptoms and test novel etiological hypothesis.

PubMed Disclaimer

Conflict of interest statement

X.G. has a consultancy relationship with Teva; R.N. was a paid consultant for Complete Genomics Inc.; A.C.R is an employee of the Parkinson Action Network; and A.D.S. is an employee of Avid Radiopharmaceuticals Inc. C.M.T. is an employee of the Parkinson’s Institute. She serves on the Scientific Advisory Boards of the Michael J. Fox Foundation and the National Spasmodic Dystonia Association and has provided consulting services to Impax Pharmaceuticals, Adamas Pharmaceuticals, and Abbvie Pharmaceuticals. She also receives grant support from the Michael J. Fox Foundation, the Brin Foundation, James and Sharron Clark, the Parkinson’s Institute and Clinical Center, the Parkinson’s Disease Foundation, the U.S. Army Medical Research Acquisition Activity (the Telemedicine & Advanced Technology Research Center–managed Neurotoxin Exposure Treatment Research Program), and the National Institutes of Health, National Institute of Neurological Disorders and Stroke. A.I.T is a consultant and/or speaker for Medtronic, St. Jude Medical, and Boston Scientific. The other authors declare they have no actual or potential competing financial interests.

The information contained in this paper does not necessarily reflect the position or the policy of the U.S. government, and no official endorsement should be inferred.

Figures

Figure 1
Figure 1
A hypothesis on the development of premotor symptoms among persons who will or will not develop PD in lifetime. The green lines represent the joint prevalence of multiple premotor symptoms by age; solid, future PD cases, and dashed for noncases. The red line represents motor signs among future PD patients. The blue line represents the loss of dopaminergic neurons in the substantia nigra pars compacta of PD patients which underlies cardinal motor signs. PD diagnosis is made based on cardinal motor signs (red) when approximately 50% of the dopaminergic neurons in the substantia nigra have been lost (threshold shown as the black dotted line). Individuals at high risk for PD (solid green line) will develop multiple premotor symptoms years before onset of PD motor signs; for individuals who will not develop PD (dashed green line), the joint prevalence of these symptoms remain at low level even at older age.
Figure 2
Figure 2
A hypothesis on risk factors, premotor symptoms, and PD. Environmental or genetic factors may initiate neurodegeneration through mechanisms such as neuroinflammation; in susceptible individuals, this may first lead to premotor symptoms years before PD clinical onset; if this neurodegeneration continues without effective intervention, premotor symptoms may eventually progress into overt PD; however, with interventions such as coffee drinking, this premotor progression may be halted before it becomes irreversible.

Comment in

References

    1. Abbott RD, Petrovitch H, White LR, Masaki KH, Tanner CM, Curb JD, et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology. 2001;57(3):456–462. - PubMed
    1. Abbott RD, Ross GW, Petrovitch H, Tanner CM, Davis DG, Masaki KH, et al. Bowel movement frequency in late-life and incidental Lewy bodies. Mov Disord. 2007;22(11):1581–1586. - PubMed
    1. Abbott RD, Ross GW, White LR, Tanner CM, Masaki KH, Nelson JS, et al. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology. 2005;65(9):1442–1446. - PubMed
    1. Anderson G, Noorian AR, Taylor G, Anitha M, Bernhard D, Srinivasan S, et al. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol. 2007;207(1):4–12. - PMC - PubMed
    1. Bach JP, Ziegler U, Deuschl G, Dodel R, Doblhammer-Reiter G. Projected numbers of people with movement disorders in the years 2030 and 2050. Mov Disord. 2011;26(12):2286–2290. - PubMed

Publication types