Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct;16(4):303-7.

Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa

Affiliations

Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa

G Meletis et al. Hippokratia. 2012 Oct.

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen associated with a range of nosocomial infections. This microorganism is noted for its intrinsic resistance to antibiotics and for its ability to acquire genes encoding resistance determinants. Among the beta-lactam antibiotics, carbapenems with antipseudomonal activity are important agents for the therapy of infections due to P. aeruginosa. The development of carbapenem resistance among P. aeruginosa strains is multifactorial. Plasmid or integron-mediated carbapenemases, increased expression of efflux systems, reduced porin expression and increased chromosomal cephalosporinase activity have all been defined as contributory factors. Phenotypic tests and molecular techniques are used for the characterization of the resistance determinants. The isolation of carbapenem resistant strains is alarming and requires the implementation of strict infection control measures in order to prevent the spread of carbapenemase encoding genes to unrelated clones or to other bacterial species.

Keywords: OprD; Pseudomonas aeruginosa; carbapenem resistance; carbapenemases; efflux systems.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Carbapenem antibiotics.

References

    1. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011;55:4943–4960. - PMC - PubMed
    1. Aldridge KE, Morice N, Schiro DD. In vitro activity of biapenem (L-627), a new carbapenem, against anaerobes. Antimicrob Agents Chemother. 1994;38:889–893. - PMC - PubMed
    1. Zhanel GG, Wiebe R, Dilay L, Thomson K, Rubinstein E, Hoban DJ, et al. Comparative review of the carbapenems. Drugs. 2007;67:1027–1052. - PubMed
    1. Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother. 2004;48:3086–3092. - PMC - PubMed
    1. Yamada M, Watanabe T, Baba N, Takeuchi Y, Ohsawa F, Gomi S. Crystal structures of biapenem and tebipenem complexed with penicillin-binding proteins 2X and 1A from Streptococcus pneumoniae. Antimicrob Agents Chemother. 2008;52:2053–2060. - PMC - PubMed

LinkOut - more resources