Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Dec;34(4):307-17.
doi: 10.3109/07388551.2013.794124. Epub 2013 Aug 13.

Biotechnological potential of microbial α-galactosidases

Affiliations
Review

Biotechnological potential of microbial α-galactosidases

Priti Katrolia et al. Crit Rev Biotechnol. 2014 Dec.

Abstract

The enzyme α-galactosidase (α-D-galactoside galactohydrolase; EC 3.2.1.22) catalyzes the hydrolysis of α-1,6-linked galactose residues in oligosaccharides and polymeric galactomannan. The α-galactosidases are of particular interest in view of their many potential biotechnological and medical applications. These enzymes have found wide use in various industries such as food and feed, sugar and paper and pulp for the removal of raffinose and stachyose. They are also important medically for blood group conversion and in the treatment of Fabry disease. Most of the research on α-galactosidases has focused on their isolation from various microbial sources. In the last decade, cloning of novel α-galactosidase genes and their heterologous expression has gained momentum. The present review focuses on the production of α-galactosidases from bacteria, fungi and yeast, and discusses their properties. Recent progress on cloning and heterologous expression in various hosts is summarized with special emphasis on their application in various fields.

Keywords: Applications; biochemical property; gene cloning; microorganism; production; α-galactosidase.

PubMed Disclaimer

Publication types

LinkOut - more resources