Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep 15;50(18):6045-54.

Cathepsin D in breast cancer cells can digest extracellular matrix in large acidic vesicles

Affiliations
  • PMID: 2393869

Cathepsin D in breast cancer cells can digest extracellular matrix in large acidic vesicles

P Montcourrier et al. Cancer Res. .

Abstract

In breast cancer cell lines, pro-cathepsin D is synthesized in excess and abnormally processed, resulting in its slower maturation and increased secretion into the culture medium. Since this lysosomal protease is only active at acidic pH, we have searched for acidic compartments other than lysosomes where cathepsin D might be active when MCF7 cells are plated on corneal extracellular matrix. We found large acidic intracellular vesicles (1.5 to 20 microns in diameter) by acridine orange and 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine staining, two fluorescent probes which reveal acidic compartments. These vesicles were actively acidified. They were 2- to 20-fold more abundant in MCF7 breast cancer cells and primary cultures of human breast cancers cells than in primary cultures of normal mammary epithelial cells. In living MCF7 cells, high resolution video-enhanced microscopy showed that these vesicles were mobile and intracellular. Double immunolocalization indicated that they contained mature cathepsin D (but no detectable pro-cathepsin D) and endocytosed extracellular material. This material (dextran, transferrin, and extracellular matrix) and the association with other lysosomal enzymes varied according to the vesicles, suggesting their heterogeneity (large endosomes or phagosomes). We conclude that, in breast cancer cells, cathepsin D may digest intracellularly phagocytosed and/or endocytosed extracellular matrix in large acidic vesicles. We propose that the higher expression of cathepsin D associated with the increased number of large acidic vesicles in breast cancer cells may facilitate digestion of basement membrane and consequently metastasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources