Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 4;288(40):28727-32.
doi: 10.1074/jbc.M113.477943. Epub 2013 Aug 12.

The allosteric role of the AAA+ domain of ChlD protein from the magnesium chelatase of synechocystis species PCC 6803

Affiliations

The allosteric role of the AAA+ domain of ChlD protein from the magnesium chelatase of synechocystis species PCC 6803

Nathan B P Adams et al. J Biol Chem. .

Abstract

Magnesium chelatase is an AAA(+) ATPase that catalyzes the first step in chlorophyll biosynthesis, the energetically unfavorable insertion of a magnesium ion into a porphyrin ring. This enzyme contains two AAA(+) domains, one active in the ChlI protein and one inactive in the ChlD protein. Using a series of mutants in the AAA(+) domain of ChlD, we show that this site is essential for magnesium chelation and allosterically regulates Mg(2+) and MgATP(2-) binding.

Keywords: ATPases; Biosynthesis; Enzyme Catalysis; Mutagenesis Site-specific; Porphyrin.

PubMed Disclaimer

Figures

FIGURE 1.
FIGURE 1.
CD spectra (mean residue ellipticity) of His6-ChlD variants (0. 1 mg ml−1) at 25 °C in 5 mm sodium phosphate buffer, 1 mm β-mercaptoethanol, pH 7.4. Traces show wild type (○), K49A (□), E152Q (▵), R208A (♢), and R289A (●) His6-ChlD.
FIGURE 2.
FIGURE 2.
ATP-dependent complex formation between wild type ChlI (2 μm) and mutant His6-ChlD (2 μm). All samples contained ChlI and in addition, lane 1, wild type His6-ChlD and no ATP; lane 2, wild type His6-ChlD with ATP; lane 3, His6-ChlD (K49A) and no ATP; lane 4, His6-ChlD (K49A) with ATP; lane 5, His6-ChlD (E152Q) and no ATP; lane 6, His6-ChlD (E152Q) with ATP; lane 7, His6-ChlD (R208A) and no ATP; lane 8, His6-ChlD (R208A) with ATP; lane 9, His6-ChlD (R289A) and no ATP; lane 10, His6-ChlD (R289A) with ATP.
FIGURE 3.
FIGURE 3.
Chelatase assembly titrations between wild type ChlI and wild type (○), E152Q (▵), R208A (♢), and R289A (●) His6-ChlD. Assays contained 0.1 μm ChlD, 0.4 μm ChlH in 50 mm MOPS/KOH, 0.3 m glycerol, 1 mm DTT, 10 mm free Mg2+, I = 0.1 with KCl, 8 μm DIX, pH 7.7, 34 °C. The curves can be described by Equation 3 with the characterizing parameters: (wild type ChlD) Kapp 0.17 ± 0.9 nm nd 0.23 ± 0.01 μm and vlim 0.22 ± 0.01 μm min−1; (E152Q) Kapp 0.35 ± 7.3 nm nd 0.24 ± 0.01 μm and vlim 0.04 ± 0.01 μm min−1; (R208A) Kapp 14 ± 11 nm nd 0.20 ± 0.01 μm and vlim 0.14 ± 0.01 μm min−1; (R289A) Kapp 52 ± 155 nm nd 0.19 ± 0.09 μm and vlim 0.016 ± 0.009 μm min−1.
FIGURE 4.
FIGURE 4.
MgATP2− dependence of the steady-state chelation rate with wild type (a), R208A (b), E152Q (c), R289A (d), and K49A (e) variants of ChlD. Assays contained 0.1 μm ChlD, 0.2 μm ChlI, 0.4 μm ChlH in 50 mm MOPS/KOH, 0.3 m glycerol, 1 mm DTT, 10 mm free Mg2+, I = 0.1 with KCl, 8 μm DIX, pH 7.7, 34 °C. The lines are described by Equation 2 with characterizing parameters kcat 0.405 ± 0.014 min−1 K0.5 0.43 ± 0.02 mm, n 2.0 ± 0.2 (a); kcat 0.263 ± 0.005 min−1 K0.5 0.78 ± 0.02 mm, n 2.0 ± 0.10 (b); kcat 0.108 ± 0.004 min−1 K0.5 0.72 ± 0.04 mm, n 1.8 ± 0.17 (c); and by the Michaelis-Menten equation kcat 0.054 ± 0.005 min−1 Km 1.79 ± 0.32 mm (d). No activity was observed with the K49A variant.
FIGURE 5.
FIGURE 5.
Free magnesium dependence of the steady-state chelation rate with wild type (a), R208A (b), E152Q (c), and R289A (d) variants of ChlD. Assays contained 0.1 μm ChlD, 0.2 μm ChlI, 0.4 μm ChlH in 50 mm MOPS/KOH, 0.3 m glycerol, 1 mm DTT, 5 mm ATP, I = 0.1 with KCl, 8 μm DIX, pH 7.7, 34 °C. The lines are described by Equation 2 with characterizing parameters kcat 0.49 ± 0.01 min−1 K0.5 4.93 ± 0.04 mm, n 6.0 ± 0.3 (a); kcat 0.50 ± 0.06 min−1 K0.5 7.18 ± 0.74 mm, n 2.4 ± 0.2 (b); kcat 0.17 ± 0.02 min−1 K0.5 6.97 ± 0.66 mm, n 2.7 ± 0.3 (c); and by a straight line equation kcat/Km 1.7 ± 1.0 min−1 mm−1 (d).
FIGURE 6.
FIGURE 6.
Deuteroporphyrin dependence of the steady-state chelation rate with wild type (a), R208A (b), E152Q (c), and R289A (d) variants of ChlD. Assays contained 0.1 μm ChlD, 0.2 μm ChlI, 0.4 μm ChlH in 50 mm MOPS/KOH, 0.3 m glycerol, 1 mm DTT, 5 mm ATP, I = 0.1 with KCl, pH 7.7, 34 °C. Lines are described by the Michaelis-Menten equation with the characterizing parameters kcat 1.13 ± 0.06 min−1 Km 5.74 ± 0.77 μm (a); kcat 0.86 min−1, Km 6.31 ± 0.75 μm (b); kcat 0.20 ± 0.01 min−1 Km 1.23 ± 0.13 μm (c); and kcat 0.08 ± 0.01 min−1 Km 0.99 ± 0.12 μm (d).

References

    1. Reid J. D., Hunter C. N. (2004) Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803. J. Biol. Chem. 279, 26893–26899 - PubMed
    1. Gibson L. C., Willows R. D., Kannangara C. G., von Wettstein D., Hunter C. N. (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitiution of activity by combining the products of the bchH, -I and -D genes expressed in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92, 1941–1944 - PMC - PubMed
    1. Jensen P. E., Gibson L. C., Henningsen K. W., Hunter C. N. (1996) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J. Biol. Chem. 271, 16662–16667 - PubMed
    1. Willows R. D., Gibson L. C., Kanangara C. G., Hunter C. N., von Wettstein D. (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur. J. Biochem. 235, 438–443 - PubMed
    1. Karger G. A., Reid J. D., Hunter C. N. (2001) Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 40, 9291–9299 - PubMed

Publication types