The effect of music on the human stress response
- PMID: 23940541
- PMCID: PMC3734071
- DOI: 10.1371/journal.pone.0070156
The effect of music on the human stress response
Abstract
Background: Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response.
Methods: Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music ('Miserere', Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters.
Results: The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups.
Conclusion: Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the beneficial effects of music on the human body.
Conflict of interest statement
Figures
References
-
- McEwen BS (1998) Protective and Damaging Effects of Stress Mediators. N Engl J Med 338: 171-179. doi:10.1056/NEJM199801153380307. PubMed: 9428819. - DOI - PubMed
-
- McEwen BS (2008) Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583: 174-185. doi:10.1016/j.ejphar.2007.11.071. PubMed: 18282566. - DOI - PMC - PubMed
-
- Nater UM, Gaab J, Rief W, Ehlert U (2006) Recent trends in behavioral medicine. Curr Opin Psychiatry 19: 180-183. doi:10.1097/01.yco.0000214345.37002.77. PubMed: 16612200. - DOI - PubMed
-
- Nyklicek I, Thayer JF, Van Doornen LJP (1997) Cardiorespiratory differentiation of musically induced emotions. J Psychophysiol 11: 304-321.
-
- Khalfa S, Bella SD, Roy M, Peretz I, Lupien SJ (2003) Effects of relaxing music on salivary cortisol level after psychological stress. Ann N Y Acad Sci 999: 374-376. doi:10.1196/annals.1284.045. PubMed: 14681158. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
