Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014;20(17):2934-47.
doi: 10.2174/13816128113199990591.

TGF-beta signaling in cancer treatment

Affiliations
Review

TGF-beta signaling in cancer treatment

Isabel Fabregat et al. Curr Pharm Des. 2014.

Abstract

The transforming growth factor-beta (TGF-β ) belongs to a superfamily of cytokines that act on protein kinase receptors at the plasma membrane to induce a plethora of biological signals that regulate cell growth and death, differentiation, immune response, angiogenesis and inflammation. Dysregulation of its pathway contributes to a broad variety of pathologies, including cancer. TGF-β is an important regulatory tumor suppressor factor in epithelial cells, where it early inhibits proliferation and induces apoptosis. However, tumor cells develop mechanisms to overcome the TGF-β -induced suppressor effects. Once this occurs, cells may respond to this cytokine inducing other effects that contribute to tumor progression. Indeed, TGF-β induces epithelial-mesenchymal transition (EMT), a process that is favored in tumor cells and facilitates migration and invasion. Furthermore, TGF-β mediates production of mitogenic growth factors, which stimulate tumor proliferation and survival. Finally, TGF-β is a well known immunosuppressor and pro-angiogenic factor. Many studies have identified the overexpression of TGF-β 1 in various types of human cancer, which correlates with tumor progression, metastasis, angiogenesis and poor prognostic outcome. For these reasons, different strategies to block TGF-β pathway in cancer have been developed and they can be classified in: (1) blocking antibodies and ligand traps; (2) antisense oligos; (3) TβRII and/or ALK5 inhibitors; (4) immune response-based strategies; (5) other inhibitors of the TGF-β pathway. In this review we will overview the two faces of TGF-β signaling in the regulation of tumorigenesis and we will dissect how targeting the TGF-β pathway may contribute to fight against cancer.

PubMed Disclaimer

Publication types

MeSH terms

Substances