Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy
- PMID: 2394454
- DOI: 10.1109/10.55677
Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy
Abstract
This paper describes simulation of steady-state intratumoral temperatures achieved by a simple modality of local heat therapy: interstitial treatment with parallel arrays of warmed, conductive heating elements. During "conductive heating" power is directly deposited only in the interstitial probes. Adjacent tissue is warmed by heat conduction. Simulations of interstitial conductive heating involved solution of the bioheat transfer equation on a digital computer using a finite difference model of the treated tissue. The simulations suggest that when the complete temperature distributions for conductive interstitial hyperthermia are examined in detail, substantial uniformity of the temperature distributions is evident. Except for a thin sleeve of tissue surrounding each heating element, a broad, flat central valley of temperature elevation is achieved, with a well defined minimum temperature, very close to modal and median tissue temperatures. Because probes are inserted directly in tumor tissue, the thin sleeve of overheated tissue would not be expected to cause normal tissue complications. The temperature of the heated probes must be continuously controlled and increased in the face of increased blood flow in order to maintain minimum tumor temperature. However, correction for changes in blood flow is possible by adjusting probe temperature according to a feedback control scheme, in which power dissipation from each probe is the sensed input variable. Conductive interstitial heating with continually controlled probe temperature deserves investigation as a technique for local hyperthermia therapy.
Similar articles
-
Improved preferential tumor hyperthermia with regional heating and systemic blood cooling: a balanced heat transfer method.Radiat Res. 1984 Mar;97(3):488-98. Radiat Res. 1984. PMID: 6729025
-
Calculations of heating patterns of an array of microwave interstitial antennas.IEEE Trans Biomed Eng. 1993 Aug;40(8):771-9. doi: 10.1109/10.238461. IEEE Trans Biomed Eng. 1993. PMID: 8258443
-
A numerical study of rapid heating for high temperature radio frequency hyperthermia.Int J Biomed Comput. 1994 May;35(4):297-307. Int J Biomed Comput. 1994. PMID: 8063456
-
Tissue physiology and the response to heat.Int J Hyperthermia. 2006 May;22(3):197-203. doi: 10.1080/02656730600689066. Int J Hyperthermia. 2006. PMID: 16754339 Review.
-
Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment.Int J Hyperthermia. 2005 Dec;21(8):761-7. doi: 10.1080/02656730500204487. Int J Hyperthermia. 2005. PMID: 16338859 Review.
Cited by
-
Computer-aided design and evaluation of novel catheters for conductive interstitial hyperthermia.Med Biol Eng Comput. 1991 Jan;29(1):25-33. doi: 10.1007/BF02446292. Med Biol Eng Comput. 1991. PMID: 2016917
-
Evidence of changes in regional blood perfusion in human intracranial tumours during conductive interstitial hyperthermia.Med Biol Eng Comput. 1992 Nov;30(6):651-5. doi: 10.1007/BF02446799. Med Biol Eng Comput. 1992. PMID: 1297022 No abstract available.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources