Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;8(9):1170-80.
doi: 10.1097/JTO.0b013e3182992421.

A prediction model for pathologic N2 disease in lung cancer patients with a negative mediastinum by positron emission tomography

Affiliations
Free article

A prediction model for pathologic N2 disease in lung cancer patients with a negative mediastinum by positron emission tomography

Farhood Farjah et al. J Thorac Oncol. 2013 Sep.
Free article

Abstract

Introduction: Guidance is limited for invasive staging in patients with lung cancer without mediastinal disease by positron emission tomography (PET). We developed and validated a prediction model for pathologic N2 disease (pN2), using six previously described risk factors: tumor location and size by computed tomography (CT), nodal disease by CT, maximum standardized uptake value of the primary tumor, N1 by PET, and histology.

Methods: A cohort study (2004-2009) was performed in patients with T1/T2 by CT and N0/N1 by PET. Logistic regression analysis was used to develop a prediction model for pN2 among a random development set (n = 625). The model was validated in both the development set, which comprised two thirds of the patients and the validation set (n = 313), which comprised the remaining one third. Model performance was assessed in terms of discrimination and calibration.

Results: Among 938 patients, 9.9% had pN2 (9 detected by invasive staging and 84 intraoperatively). In the development set, univariate analyses demonstrated a significant association between pN2 and increasing tumor size (p < 0.001), nodal status by CT (p = 0.007), maximum standardized uptake value of the primary tumor (p = 0.027), and N1 by PET (p < 0.001); however, only N1 by PET was associated with pN2 (p < 0.001) in the multivariate prediction model. The model performed reasonably well in the development (c-statistic, 0.70; 95% confidence interval, 0.63-0.77; goodness of fit p = 0.61) and validation (c-statistic, 0.65; 95% confidence interval, 0.56-0.74; goodness-of-fit p = 0.19) sets.

Conclusion: A prediction model for pN2 based on six previously described risk factors has reasonable performance characteristics. Observations from this study may guide prospective, multicenter development and validation of a prediction model for pN2.

PubMed Disclaimer

Comment in

MeSH terms

Substances

LinkOut - more resources