Pseudo-partial likelihood estimators for the Cox regression model with missing covariates
- PMID: 23946546
- PMCID: PMC3741327
- DOI: 10.1093/biomet/asp027
Pseudo-partial likelihood estimators for the Cox regression model with missing covariates
Abstract
By embedding the missing covariate data into a left-truncated and right-censored survival model, we propose a new class of weighted estimating functions for the Cox regression model with missing covariates. The resulting estimators, called the pseudo-partial likelihood estimators, are shown to be consistent and asymptotically normal. A simulation study demonstrates that, compared with the popular inverse-probability weighted estimators, the new estimators perform better when the observation probability is small and improve efficiency of estimating the missing covariate effects. Application to a practical example is reported.
Keywords: Augmented estimator; Biased sampling data; Embedding missing data; Left-truncation; Martingale structure; Right censoring; U-statistic.
Figures


Similar articles
-
Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation.J Am Stat Assoc. 2017;112(519):1221-1235. doi: 10.1080/01621459.2016.1205500. Epub 2017 Apr 25. J Am Stat Assoc. 2017. PMID: 33033419 Free PMC article.
-
Regression modeling of restricted mean survival time for left-truncated right-censored data.Stat Med. 2022 Jul 20;41(16):3003-3021. doi: 10.1002/sim.9399. Epub 2022 Mar 28. Stat Med. 2022. PMID: 35708238 Free PMC article.
-
A pairwise pseudo-likelihood approach for regression analysis of left-truncated failure time data with various types of censoring.BMC Med Res Methodol. 2023 Apr 4;23(1):82. doi: 10.1186/s12874-023-01903-x. BMC Med Res Methodol. 2023. PMID: 37016341 Free PMC article.
-
Augmented inverse probability weighted estimator for Cox missing covariate regression.Biometrics. 2001 Jun;57(2):414-9. doi: 10.1111/j.0006-341x.2001.00414.x. Biometrics. 2001. PMID: 11414564
-
Best linear inverse probability weighted estimation for two-phase designs and missing covariate regression.Stat Med. 2019 Jul 10;38(15):2783-2796. doi: 10.1002/sim.8141. Epub 2019 Mar 25. Stat Med. 2019. PMID: 30908669 Free PMC article.
Cited by
-
Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation.J Am Stat Assoc. 2017;112(519):1221-1235. doi: 10.1080/01621459.2016.1205500. Epub 2017 Apr 25. J Am Stat Assoc. 2017. PMID: 33033419 Free PMC article.
-
Efficient Estimation of Semiparametric Transformation Models for Two-Phase Cohort Studies.J Am Stat Assoc. 2014 Jan 1;109(505):371-383. doi: 10.1080/01621459.2013.842172. J Am Stat Assoc. 2014. PMID: 24659837 Free PMC article.
-
Regularized Buckley-James method for right-censored outcomes with block-missing multimodal covariates.Stat (Int Stat Inst). 2022 Dec;11(1):e515. doi: 10.1002/sta4.515. Epub 2022 Oct 13. Stat (Int Stat Inst). 2022. PMID: 37854542 Free PMC article.
-
Pseudo-partial likelihood for proportional hazards models with biased-sampling data.Biometrika. 2009 Sep;96(3):601-615. doi: 10.1093/biomet/asp026. Epub 2009 Jun 24. Biometrika. 2009. PMID: 22422175 Free PMC article.
References
-
- Andersen PK, Borgan O, Gill RD, Keiding N. Statistical Models Based on Counting Processes. New York: Springer; 1993.
-
- Chen K. Generalized case-cohort sampling. J. R. Statist. Soc. B. 2001;63:791–809.
-
- Chen K, Lo S-H. Case-cohort and case-control analysis with Cox’s model. Biometrika. 1999;86:755–64.
-
- Cox DR. Regression models and life tables (with Discussion) J. R. Statist. Soc. B. 1972;34:187–220.
-
- Cox DR. Partial likelihood. Biometrika. 1975;62:269–76.