Ion selectivity of the Vibrio alginolyticus flagellar motor
- PMID: 2394685
- PMCID: PMC213185
- DOI: 10.1128/jb.172.9.5236-5244.1990
Ion selectivity of the Vibrio alginolyticus flagellar motor
Abstract
The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight.
Similar articles
-
Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus.J Mol Biol. 2003 Apr 11;327(5):1043-51. doi: 10.1016/s0022-2836(03)00176-1. J Mol Biol. 2003. PMID: 12662929
-
Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.J Bacteriol. 1997 Aug;179(16):5104-10. doi: 10.1128/jb.179.16.5104-5110.1997. J Bacteriol. 1997. PMID: 9260952 Free PMC article.
-
The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force.J Bacteriol. 1999 Mar;181(6):1927-30. doi: 10.1128/JB.181.6.1927-1930.1999. J Bacteriol. 1999. PMID: 10074090 Free PMC article.
-
Flagellar motility in bacteria structure and function of flagellar motor.Int Rev Cell Mol Biol. 2008;270:39-85. doi: 10.1016/S1937-6448(08)01402-0. Int Rev Cell Mol Biol. 2008. PMID: 19081534 Review.
-
Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.Genes Cells. 2011 Oct;16(10):985-99. doi: 10.1111/j.1365-2443.2011.01545.x. Epub 2011 Sep 5. Genes Cells. 2011. PMID: 21895888 Review.
Cited by
-
Structural insight into sodium ion pathway in the bacterial flagellar stator from marine Vibrio.Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2415713122. doi: 10.1073/pnas.2415713122. Epub 2024 Dec 30. Proc Natl Acad Sci U S A. 2025. PMID: 39793043 Free PMC article.
-
Ion-swimming speed variation of Vibrio cholerae cells.J Biosci. 2005 Sep;30(4):465-7. doi: 10.1007/BF02703719. J Biosci. 2005. PMID: 16184007
-
Microbial genomics and the periodic table.Appl Environ Microbiol. 2004 Feb;70(2):647-55. doi: 10.1128/AEM.70.2.647-655.2004. Appl Environ Microbiol. 2004. PMID: 14766537 Free PMC article. Review. No abstract available.
-
New structural features of the flagellar base in Salmonella typhimurium revealed by rapid-freeze electron microscopy.J Bacteriol. 1991 May;173(9):2888-96. doi: 10.1128/jb.173.9.2888-2896.1991. J Bacteriol. 1991. PMID: 2019561 Free PMC article.
-
Membrane ultrastructure of alkaliphilic Bacillus species studied by rapid-freeze electron microscopy.J Bacteriol. 1992 Aug;174(15):5123-6. doi: 10.1128/jb.174.15.5123-5126.1992. J Bacteriol. 1992. PMID: 1629169 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources