Characterization of genetic determinants that modulate Candida albicans filamentation in the presence of bacteria
- PMID: 23951271
- PMCID: PMC3737206
- DOI: 10.1371/journal.pone.0071939
Characterization of genetic determinants that modulate Candida albicans filamentation in the presence of bacteria
Abstract
In the human body, fungi and bacteria share many niches where the close contact of these organisms maintains a balance among the microbial population. However, when this microbial balance is disrupted, as with antibiotic treatment, other bacteria or fungi can grow uninhibited. C. albicans is the most common opportunistic fungal pathogen affecting humans and can uniquely control its morphogenesis between yeast, pseudohyphal, and hyphal forms. Numerous studies have shown that C. albicans interactions with bacteria can impact its ability to undergo morphogenesis; however, the genetics that govern this morphological control via these bacterial interactions are still relatively unknown. To aid in the understanding of the cross-kingdom interactions of C. albicans with bacteria and the impact on morphology we utilized a haploinsufficiency based C. albicans mutant screen to test for the ability of C. albicans to produce hyphae in the presence of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). Of the 18,144 mutant strains tested, 295 mutants produced hyphae in the presence of all three bacterial species. The 295 mutants identified 132 points of insertion, which included identified/predicted genes, major repeat sequences, and a number of non-coding/unannotated transcripts. One gene, CDR4, displayed increased expression when co-cultured with S. aureus, but not E. coli or P. aeruginosa. Our data demonstrates the ability to use a large scale library screen to identify genes involved in Candida-bacterial interactions and provides the foundation for comprehending the genetic pathways relating to bacterial control of C. albicans morphogenesis.
Conflict of interest statement
Figures





Similar articles
-
A large-scale complex haploinsufficiency-based genetic interaction screen in Candida albicans: analysis of the RAM network during morphogenesis.PLoS Genet. 2011 Apr;7(4):e1002058. doi: 10.1371/journal.pgen.1002058. PLoS Genet. 2011. PMID: 22103005 Free PMC article.
-
Influence of bacterial presence on biofilm formation of Candida albicans.Yonsei Med J. 2014 Mar;55(2):449-58. doi: 10.3349/ymj.2014.55.2.449. Yonsei Med J. 2014. PMID: 24532517 Free PMC article.
-
Temporal dynamics of Candida albicans morphogenesis and gene expression reveals distinctions between in vitro and in vivo filamentation.mSphere. 2024 Apr 23;9(4):e0011024. doi: 10.1128/msphere.00110-24. Epub 2024 Mar 19. mSphere. 2024. PMID: 38501830 Free PMC article.
-
Cell wall associated proteins involved in filamentation with impact on the virulence of Candida albicans.Microbiol Res. 2022 May;258:126996. doi: 10.1016/j.micres.2022.126996. Epub 2022 Feb 22. Microbiol Res. 2022. PMID: 35247799 Review.
-
Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence.Cell Microbiol. 2005 Nov;7(11):1546-54. doi: 10.1111/j.1462-5822.2005.00616.x. Cell Microbiol. 2005. PMID: 16207242 Review.
Cited by
-
Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans.mBio. 2017 Oct 3;8(5):e01537-17. doi: 10.1128/mBio.01537-17. mBio. 2017. PMID: 28974618 Free PMC article.
-
Synergistic Effect of Quinic Acid Derived From Syzygium cumini and Undecanoic Acid Against Candida spp. Biofilm and Virulence.Front Microbiol. 2018 Nov 26;9:2835. doi: 10.3389/fmicb.2018.02835. eCollection 2018. Front Microbiol. 2018. PMID: 30534118 Free PMC article.
-
O-mannosylation in Candida albicans enables development of interkingdom biofilm communities.mBio. 2014 Apr 15;5(2):e00911. doi: 10.1128/mBio.00911-14. mBio. 2014. PMID: 24736223 Free PMC article.
-
Secreted Aspartic Proteinases: Key Factors in Candida Infections and Host-Pathogen Interactions.Int J Mol Sci. 2024 Apr 27;25(9):4775. doi: 10.3390/ijms25094775. Int J Mol Sci. 2024. PMID: 38731993 Free PMC article. Review.
-
Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of Candida albicans.Front Microbiol. 2020 Jun 16;11:1274. doi: 10.3389/fmicb.2020.01274. eCollection 2020. Front Microbiol. 2020. PMID: 32612591 Free PMC article.
References
-
- Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8: 340-349. doi:10.1038/nrmicro2313. PubMed: 20348933. - DOI - PubMed
-
- Shirtliff ME, Peters BM, Jabra-Rizk MA (2009) Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299: 1-8. doi:10.1111/j.1574-6968.2009.01668.x. PubMed: 19552706. - DOI - PMC - PubMed
-
- Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2: 1053-1060. doi:10.1128/EC.2.5.1053-1060.2003. PubMed: 14555488. - DOI - PMC - PubMed
-
- Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A et al. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939-949. doi:10.1016/S0092-8674(00)80358-X. PubMed: 9298905. - DOI - PubMed
-
- Shareck J, Belhumeur P (2011) Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryot Cell 10: 1004-1012. doi:10.1128/EC.05030-11. PubMed: 21642508. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources