Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May;16(3):558-70.
doi: 10.1111/plb.12084. Epub 2013 Aug 16.

The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco

Affiliations

The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco

D Zhang et al. Plant Biol (Stuttg). 2014 May.

Abstract

As sessile organisms, plants are exposed to potential dangers, including multiple biotic and abiotic stresses. The mitogen-activated protein kinase (MAPK) is a universal signalling pathways involved in these processes. A previous study showed that maize ZmMPK5 is induced by various stimuli at transcriptional and post-translational levels. In this study, ZmMPK5 was overexpressed in tobacco to further analyse its biological functions. Under salt and oxidative stresses, ZmMPK5-overexpressing lines displayed less severe damage and stronger growth phenotypes corresponding to a series of physiological changes. In addition, the transgenic lines accumulated less reactive oxygen species (ROS) and had higher levels of antioxidant enzyme activity and metabolites than wild-type (WT) plants following NaCl treatment. Quantitative RT-PCR revealed that the expression of ROS-related and stress-responsive genes was higher in transgenic plants than in WT plants. Furthermore, transgenic lines exhibited enhanced resistance to viral pathogens, and expressed constitutively higher transcript levels of pathogenesis-related genes, such as PR1a, PR4, PR5 and EREBP. Taken together, these results demonstrated that ZmMPK5 is involved in salt stress, oxidative stress and pathogen defence signalling pathways, and its function may be at least partly devoted to efficiently eliminating ROS accumulation under salt stress.

Keywords: Oxidative stress; ROS; ZmMPK5; pathogen defence; salt stress.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources