Carbon nanotubes for delivery of small molecule drugs
- PMID: 23954402
- DOI: 10.1016/j.addr.2013.08.005
Carbon nanotubes for delivery of small molecule drugs
Abstract
In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.
Keywords: 1,2-Distearoyl-phosphatidylethanolamine-methoxy-polyethylene glycol conjugate-2000; 1-Octadecanethiol functionalized GNP; 10-Hydroxycamptothecin; 2,2′-(Ethylene dioxy) bis(ethylene amine); 2′,2′-Difluoro-2′-deoxycytidine; AAS; AMB; Amphotericin B; Anticancer drugs; Atomic absorption spectroscopy; BBB; BCEC; BSA; Blood brain barrier; Bovine serum albumin; Brain capillary endothelial cells; CDDP; CEA; CHI; CNF; CNTs; CP; CPT; CT; Camptothecin; Carbon nanofiber; Carbon nanotubes; Carboplatin; Carcinoembryonic antigen; Catechin; Ce6; Chitosan; Chlorin e6; Cisplatin; DAU; DDS; DEX; DMAAM; DNA; DOX; DSPE-mPEG 2000; DTX; DWCNTs; Daunorubicin; Deoxyribonucleic acid; Dexamethasone; Docetaxel; Double-walled CNTs; Doxorubicin; Drug delivery; Drug delivery system; EAT; EC; EDBE; EDX; EGF; EGF receptors; EGFR; EPC; EPI; EPR; ER; ES; ES receptor; Ehlrich ascites tumor; Endothelial progenital cell; Energy dispersive X-ray analysis; Enhanced permeability and retention; Epidermal growth factor; Epirubicin; Estradiol; Ethyl cellulose; FA; FA receptor; FITC; FR; FTIR; Fluorescein isothiocyanate; Folic acid; Fourier transform infrared spectroscopy; GEM; GNP; Gelatin–catechin; Gel–CT; Gemcitabine; Gold NP; HA; HCPT; HET-CAM; HMM; HMME; HR; HUVEC; Hematoporphyrin monomethyl ether; Hen's egg test-chorioallantoic membrane; Hexamethylmelamine; Human umbilical vein endothelial cells; Hyaluronan receptor; Hyaluronic acid; ICP-OES; Inductively coupled plasma optical emission spectroscopy; LRP; LcL; Lipoprotein receptor-related protein; Luciola cruciate luciferase; MAPK; MDR; MTX; MWCNTs; Magnetic activated carbon particles; Methotrexate; Mitogen-activated protein kinase; Multi-walled CNTs; Multidrug resistance; N-dimethylacrylamide; N-isopropylacrylamide; NIPAM; NIR; NP; NSAID; Nanoparticles; Near infrared; Non-anticancer drugs; Non-steroidal anti-inflammatory drugs; ODT-f-GNP; P-glycoprotein; P-gp; PAA; PAMAM; PBS; PCA; PDM; PDT; PEG; PEG PSS; PEI; PEO; PK; PL; PLA; PSS; PTT; PTX; PVA; Paclitaxel; Pharmacokinetic; Phosphate buffered saline; Phospholipid; Photodynamic therapy; Photothermal therapy; Platinum; Poly (ethylene glycol-b-propylene sulfide); Poly(acrylic acid); Poly(amidoamine); Poly(lactide); Poly(sodium 4-styrene sulfonate); Poly(vinyl alcohol); Poly-ethylene oxide; Polyamholyte poly [2-(dimethylamino) ethyl methacrylate]-co-(methacrylic acid); Polycitric acid; Polyethylene glycol; Polyethylenimine; Pt; QD; Quantum Dot; RES; RF; ROS; Radiofrequency; Reactive oxygen species; Reticuloendothelial system; Rh; Rhodamine; SCID; SD; SEM; SWCNTs; Scanning electron microscopy; Severe combined immunodeficient; Single-walled CNTs; Small interference ribonucleic acids; Small molecule drugs; Sprague Dawley; TEM; TPGS; Tocopheryl PEG succinate; Transferrins; Transmission electron microscopy; Trf; US-CNTs; UV–vis; Ultra-short CNTs; Ultraviolet–visible; X-ray photoelectron spectroscopy; XPS; dC; mACs; siRNA.
© 2013.
Similar articles
-
Role of integrated cancer nanomedicine in overcoming drug resistance.Adv Drug Deliv Rev. 2013 Nov;65(13-14):1784-802. doi: 10.1016/j.addr.2013.07.012. Epub 2013 Jul 21. Adv Drug Deliv Rev. 2013. PMID: 23880506 Review.
-
Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17. Eur J Pharm Biopharm. 2013. PMID: 23872180 Review.
-
Small interfering RNA for cancer treatment: overcoming hurdles in delivery.Acta Pharm Sin B. 2020 Nov;10(11):2075-2109. doi: 10.1016/j.apsb.2020.10.005. Epub 2020 Oct 13. Acta Pharm Sin B. 2020. PMID: 33304780 Free PMC article. Review.
-
Bioresponsive functional nanogels as an emerging platform for cancer therapy.Expert Opin Drug Deliv. 2018 Jul;15(7):703-716. doi: 10.1080/17425247.2018.1497607. Epub 2018 Jul 16. Expert Opin Drug Deliv. 2018. PMID: 29976103 Review.
-
Nanoparticles design considerations to co-deliver nucleic acids and anti-cancer drugs for chemoresistance reversal.Int J Pharm X. 2022 Sep 6;4:100126. doi: 10.1016/j.ijpx.2022.100126. eCollection 2022 Dec. Int J Pharm X. 2022. PMID: 36147518 Free PMC article.
Cited by
-
Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo.Microb Cell Fact. 2015 Jul 4;14:95. doi: 10.1186/s12934-015-0290-9. Microb Cell Fact. 2015. PMID: 26141059 Free PMC article.
-
Distribution in the brain and possible neuroprotective effects of intranasally delivered multi-walled carbon nanotubes.Nanoscale Adv. 2020 Nov 12;3(2):418-431. doi: 10.1039/d0na00869a. eCollection 2021 Jan 26. Nanoscale Adv. 2020. PMID: 36131737 Free PMC article.
-
Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines.Nanomaterials (Basel). 2020 Aug 18;10(8):1617. doi: 10.3390/nano10081617. Nanomaterials (Basel). 2020. PMID: 32824730 Free PMC article.
-
Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation.Int J Nanomedicine. 2016 Sep 2;11:4357-71. doi: 10.2147/IJN.S111029. eCollection 2016. Int J Nanomedicine. 2016. PMID: 27621627 Free PMC article.
-
Therapeutic activity of sour orange albedo extract and abundant flavanones loaded silica nanoparticles against acrylamide-induced hepatotoxicity.Toxicol Rep. 2018 Sep 9;5:929-942. doi: 10.1016/j.toxrep.2018.08.021. eCollection 2018. Toxicol Rep. 2018. PMID: 30294554 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous