Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Dec;38(13):2555-67.
doi: 10.1038/npp.2013.206. Epub 2013 Aug 19.

Volatile solvents as drugs of abuse: focus on the cortico-mesolimbic circuitry

Affiliations
Review

Volatile solvents as drugs of abuse: focus on the cortico-mesolimbic circuitry

Jacob T Beckley et al. Neuropsychopharmacology. 2013 Dec.

Abstract

Volatile solvents such as those found in fuels, paints, and thinners are found throughout the world and are used in a variety of industrial applications. However, these compounds are also often intentionally inhaled at high concentrations to produce intoxication. While solvent use has been recognized as a potential drug problem for many years, research on the sites and mechanisms of action of these compounds lags behind that of other drugs of abuse. In this review, we first discuss the epidemiology of voluntary solvent use throughout the world and then consider what is known about their basic pharmacology and how this may explain their use as drugs of abuse. We next present data from preclinical and clinical studies indicating that these substances induce common addiction sequelae such as dependence, withdrawal, and cognitive impairments. We describe how toluene, the most commonly studied psychoactive volatile solvent, alters synaptic transmission in key brain circuits such as the mesolimbic dopamine system and medial prefrontal cortex (mPFC) that are thought to underlie addiction pathology. Finally, we make the case that activity in mPFC circuits is a critical regulator of the mesolimbic dopamine system's ability to respond to volatile solvents like toluene. Overall, this review provides evidence that volatile solvents have high abuse liability because of their selective effects on critical nodes of the addiction neurocircuitry, and underscores the need for more research into how these compounds induce adaptations in neural circuits that underlie addiction pathology.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Trends in 30-day prevalence for voluntary use of various drugs among American 8th grade students. Solvents are indicated by triangles with the final point being encircled. Data from Johnston et al (2013).
Figure 2
Figure 2
Toluene dose-dependently alters the activity of a wide range of ion channels. Color bar indicates relative range of concentrations of toluene with odor threshold and huffing concentration indicated. Position of ion channel along the x-direction indicates relative sensitivity of individual ion channels to toluene while position along the y-direction indicates inhibition (below dotted line) or potentiation (above dotted line). Toluene has no appreciable effect on ion channels that overlay the dotted line. Underline indicates data collected in the author's laboratory.
Figure 3
Figure 3
Toluene enhances excitatory transmission onto mesolimbic neurons. (a) Example of a VTA neuron that expresses red retrobeads. (b) Representative example of a recorded neuron in the VTA that is TH+. (c) Summary effects of in vivo toluene on AMPA/NMDA ratio from mesoaccumbens core neurons. (i) Dose-depedency of toluene's actions on the AMPA/NMDA ratio (*p<0.05). (ii) Toluene's effect persists for at most 6 days (*p<0.05). (iii) Representative AMPA and NMDA traces from mesoaccumbens core neurons. (d) Summary of effects on mesolimbic shell neurons. (i) Toluene's effect on AMPA/NMDA ratio persists at least 21 days (*p<0.05). (ii) Representative AMPA and NMDA traces from mesolimbic shell neurons. From Beckley et al, 2013; with permission from the Journal of Neuroscience.
Figure 4
Figure 4
The medial prefrontal cortex inhibits the mesolimbic DA pathway through several different transsynaptic circuits. This wiring diagram is overlaying a sagittal section ∼1 mm from midline, stained with cresyl violet Nissl stain (Paxinos and Watson, 2005). Black—glutamate, red—GABA, blue—dopamine, green—mix (acetylcholine, substance P). IPN, interpeduncular nucleus; LDTg, lateral dorsal tegmentum; LHb, lateral habenula; mHB, medial habenula; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; RMTg, rostromedial tegmentum; VTA, ventral tegmental area.

Similar articles

Cited by

References

    1. Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci. 2008;28:8821–8831. - PMC - PubMed
    1. Argilli E, Sibley DR, Malenka RC, England PM, Bonci A. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. JNeurosci. 2008;28:9092–9100. - PMC - PubMed
    1. Aston-Jones G, Smith RJ, Moorman DE, Richardson KA. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology. 2009;56 (Suppl 1:112–121. - PMC - PubMed
    1. Bale AS, Smothers CT, Woodward JJ. Inhibition of neuronal nicotinic acetylcholine receptors by the abused solvent, toluene. Br J Pharmacol. 2002;137:375–383. - PMC - PubMed
    1. Bale AS, Tu Y, Carpenter-Hyland EP, Chandler LJ, Woodward JJ. Alterations in glutamatergic and gabaergic ion channel activity in hippocampal neurons following exposure to the abused inhalant toluene. Neuroscience. 2005;130:197–206. - PubMed

Publication types