Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;30(11):2463-74.
doi: 10.1093/molbev/mst145. Epub 2013 Aug 21.

Reconstruction of ancestral 16S rRNA reveals mutation bias in the evolution of optimal growth temperature in the Thermotogae phylum

Affiliations

Reconstruction of ancestral 16S rRNA reveals mutation bias in the evolution of optimal growth temperature in the Thermotogae phylum

Anna G Green et al. Mol Biol Evol. 2013 Nov.

Abstract

Optimal growth temperature is a complex trait involving many cellular components, and its physiology is not yet fully understood. Evolution of continuous characters, such as optimal growth temperature, is often modeled as a one-dimensional random walk, but such a model may be an oversimplification given the complex processes underlying the evolution of continuous characters. Recent articles have used ancestral sequence reconstruction to infer the optimal growth temperature of ancient organisms from the guanine and cytosine content of the stem regions of ribosomal RNA, allowing inferences about the evolution of optimal growth temperature. Here, we investigate the optimal growth temperature of the bacterial phylum Thermotogae. Ancestral sequence reconstruction using a nonhomogeneous model was used to reconstruct the stem guanine and cytosine content of 16S rRNA sequences. We compare this sequence reconstruction method with other ancestral character reconstruction methods, and show that sequence reconstruction generates smaller confidence intervals and different ancestral values than other reconstruction methods. Unbiased random walk simulation indicates that the lower temperature members of the Thermotogales have been under directional selection; however, when a simulation is performed that takes possible mutations into account, it is the high temperature lineages that are, in fact, under directional selection. We find that the evolution of Thermotogales optimal growth temperatures is best fit by a biased random walk model. These findings suggest that it may be easier to evolve from a high optimal growth temperature to a lower one than vice versa.

Keywords: Thermotogae; ancestral character reconstruction; complex trait evolution; nonhomogeneous models; random walk; thermophiles.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources