Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 15;8(8):e71846.
doi: 10.1371/journal.pone.0071846. eCollection 2013.

Plasma lipid composition and risk of developing cardiovascular disease

Affiliations

Plasma lipid composition and risk of developing cardiovascular disease

Celine Fernandez et al. PLoS One. .

Abstract

Aims: We tested whether characteristic changes of the plasma lipidome in individuals with comparable total lipids level associate with future cardiovascular disease (CVD) outcome and whether 23 validated gene variants associated with coronary artery disease (CAD) affect CVD associated lipid species.

Methods and results: Screening of the fasted plasma lipidome was performed by top-down shotgun analysis and lipidome compositions compared between incident CVD cases (n = 211) and controls (n = 216) from the prospective population-based MDC study using logistic regression adjusting for Framingham risk factors. Associations with incident CVD were seen for eight lipid species (0.21≤q≤0.23). Each standard deviation unit higher baseline levels of two lysophosphatidylcholine species (LPC), LPC16∶0 and LPC20∶4, was associated with a decreased risk for CVD (P = 0.024-0.028). Sphingomyelin (SM) 38∶2 was associated with increased odds of CVD (P = 0.057). Five triglyceride (TAG) species were associated with protection (P = 0.031-0.049). LPC16∶0 was negatively correlated with the carotid intima-media thickness (P = 0.010) and with HbA1c (P = 0.012) whereas SM38∶2 was positively correlated with LDL-cholesterol (P = 0.0*10(-6)) and the q-values were good (q≤0.03). The risk allele of 8 CAD-associated gene variants showed significant association with the plasma level of several lipid species. However, the q-values were high for many of the associations (0.015≤q≤0.75). Risk allele carriers of 3 CAD-loci had reduced level of LPC16∶0 and/or LPC 20∶4 (P≤0.056).

Conclusion: Our study suggests that CVD development is preceded by reduced levels of LPC16∶0, LPC20∶4 and some specific TAG species and by increased levels of SM38∶2. It also indicates that certain lipid species are intermediate phenotypes between genetic susceptibility and overt CVD. But it is a preliminary study that awaits replication in a larger population because statistical significance was lost for the associations between lipid species and future cardiovascular events when correcting for multiple testing.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Quantification by top-down lipidomics correlates with clinical parameters.
Linear regression analysis of A) the total triglyceride content or B) the total cholesterol content determined by MS versus the value obtained by traditional clinical chemistry analysis. The total triglyceride content measured by MS is obtained by summing the abundances of all the individual TAG species and the total cholesterol content by summing the abundances of free cholesterol and all cholesteryl esters.
Figure 2
Figure 2. Association between the lipid profile and the risk allele of 8 CAD-associated gene variants.
Heat map of regression coefficients obtained from linear regressions performed between the CAD-associated locus (with the CAD-associated allele coded) and the lipid species after log transformation adjusting for age and sex. *P<0.05, o P<0.01, + P<0.001.

References

    1. Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, et al. (2003) Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA 290: 891–897. - PubMed
    1. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, et al. (2003) Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 290: 898–904. - PubMed
    1. Melander O, Newton-Cheh C, Almgren P, Hedblad B, Berglund G, et al. (2009) Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA 302: 49–57. - PMC - PubMed
    1. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, et al. (2006) Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 355: 2631–2639. - PubMed
    1. Gross RW, Han X (2011) Lipidomics at the interface of structure and function in systems biology. Chem Biol 18: 284–291. - PMC - PubMed

Publication types

MeSH terms