Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;43(5):1495-502.
doi: 10.3892/ijo.2013.2070. Epub 2013 Aug 21.

p53 restoration can overcome cisplatin resistance through inhibition of Akt as well as induction of Bax

Affiliations

p53 restoration can overcome cisplatin resistance through inhibition of Akt as well as induction of Bax

Chae Won Kim et al. Int J Oncol. 2013 Nov.

Abstract

Cisplatin (CDDP) is a chemotherapeutic agent that is widely used to treat many cancers. However, initial resistance to CDDP is a serious problem in treating cancers. In this study, in order to develop an approach to overcome resistance to CDDP, we investigated the difference in apoptotic processes between CDDP-sensitive cells and CDDP-resistant cells. By screening with CDDP sensitivity tests, we chose SNU-16 cells which are relatively resistant to CDDP, and SNU-1 cells which are sensitive to CDDP. We compared the difference between the two cell lines focusing on apoptosis. CDDP-induced reactive oxygen species (ROS) generation significantly induced loss of mitochondrial membrane potential (MMP, ∆Ψm) in SNU-1 cells, but not in SNU-16 cells. In addition, the ratio of Bax to Bcl-2 was increased by CDDP treatment in SNU-1 cells, but not in SNU-16 cells. To augment the loss of MMP, ∆Ψm in SNU-16, we inhibited Akt activity of SNU-16 cells to suppress their anti-apoptotic activity. The inhibition of Akt activity led to suppression of the anti-apoptotic protein XIAP. Akt inhibition slightly enhanced CDDP-induced apoptosis in SNU-16 cells. In addition, we enhanced pro-apoptotic activity by transfecting the cells with the wild-type p53 gene. The induction of wild-type p53 can enhance CDDP-induced apoptosis not only by inducing Bax protein but also by suppressing anti-apoptotic proteins through inhibition of Akt. In conclusion, this study suggests that the primary contributor to resistance to CDDP in SNU-16 cells may well be a failure of induction of apoptosis due to a lack of induction of pro-apoptotic proteins rather than suppression of anti-apoptotic proteins, and that restoration of p53 function can overcome the resistance to CDDP not only by augmenting the pro-apoptotic drive through p53-mediated transcriptional activation but also by inhibiting the anti-apoptotic drive through inhibition of Akt activity.

PubMed Disclaimer

Publication types

MeSH terms