Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Sep;67(3):770-3.
doi: 10.1161/01.res.67.3.770.

Xanthine oxidoreductase activity in perfused hearts of various species, including humans

Affiliations
Free article
Comparative Study

Xanthine oxidoreductase activity in perfused hearts of various species, including humans

J W de Jong et al. Circ Res. 1990 Sep.
Free article

Abstract

Oxygen free radicals generated by xanthine oxidase have been implicated in cardiac damage. The activity of xanthine oxidase/reductase in adult rat heart is considerable. Its assay gives controversial results for other species, for example, rabbits and humans. Therefore, we perfused isolated hearts of various species, including explanted human hearts, to measure the conversion of exogenous hypoxanthine to xanthine and urate. We assayed these purines with high-performance liquid chromatography. The apparent xanthine oxidoreductase activities, calculated as release of xanthine plus 2x urate, were (milliunits per gram wet weight, mean +/- SEM) mice 33 +/- 3 (n = 5), rats 28.5 +/- 1.4 (n = 9), guinea pigs 14.4 +/- 1.0 (n = 5), rabbits 0.59 +/- 0.09 (n = 5), pigs less than 0.1 (n = 6), humans 0.31 +/- 0.04 (n = 7), and cows 3.7 +/- 0.8 (n = 4). In rabbit heart the conversion of hypoxanthine to xanthine was slow, and that of xanthine to urate was even slower. On the other hand, guinea pig and human heart released little xanthine, indicating that xanthine breakdown exceeds its formation. We conclude that isolated perfused mouse, rat, guinea pig, and also bovine hearts show considerable xanthine oxidoreductase activity, contrasting rabbit, porcine, and diseased human hearts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources