Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013:1078:9-21.
doi: 10.1007/978-1-62703-640-5_2.

Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology

Affiliations

Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology

Jane Kovalevich et al. Methods Mol Biol. 2013.

Abstract

The use of primary mammalian neurons derived from embryonic central nervous system tissue is limited by the fact that once terminally differentiated into mature neurons, the cells can no longer be propagated. Transformed neuronal-like cell lines can be used in vitro to overcome this limitation. However, several caveats exist when utilizing cells derived from malignant tumors. In this context, the popular SH-SY5Y neuroblastoma cell line and its use in in vitro systems is described. Originally derived from a metastatic bone tumor biopsy, SH-SY5Y (ATCC(®) CRL-2266™) cells are a subline of the parental line SK-N-SH (ATCC(®) HTB-11™). SK-N-SH were subcloned three times; first to SH-SY, then to SH-SY5, and finally to SH-SY5Y. SH-SY5Y were deposited to the ATCC(®) in 1970 by June L. Biedler.Three important characteristics of SH-SY5Y cells should be considered when using these cells in in vitro studies. First, cultures include both adherent and floating cells, both types of which are viable. Few studies address the biological significance of the adherent versus floating phenotypes, but most reported studies utilize adherent populations and discard the floating cells during media changes. Second, early studies by Biedler's group indicated that the parental differentiated SK-N-SH cells contained two morphologically distinct phenotypes: neuroblast-like cells and epithelial-like cells (Ross et al., J Nat Cancer Inst 71:741-747, 1983). These two phenotypes may correspond to the "N" and "S" types described in later studies in SH-SY5Y by Encinas et al. (J Neurochem 75:991-1003, 2000). Cells with neuroblast-like morphology are positive for tyrosine hydroxylase (TH) and dopamine-β-hydroxylase characteristic of catecholaminergic neurons, whereas the epithelial-like counterpart cells lacked these enzymatic activities (Ross et al., J Nat Cancer Inst 71:741-747, 1983). Third, SH-SY5Y cells can be differentiated to a more mature neuron-like phenotype that is characterized by neuronal markers. There are several methods to differentiate SH-SY5Y cells and are mentioned below. Retinoic acid is the most commonly used means for differentiation and will be addressed in detail.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Undifferentiated SH-SY5Y cells. Cells tend to grow in clusters and may form clumps of rounded cells on top of one another (arrow). At edges of the cluster, cells begin to extend short neurites (arrowhead)
Fig. 2
Fig. 2
Differentiated SH-SY5Y cells. Cells do not cluster and have a more pyramidal shaped cell body (arrowhead). Neurites begin to extend, reminiscent of dendrites and/or axons
Fig. 3
Fig. 3
Differentiated cells populations consist of two morphologically distinct types: “S” and “N”. The “S” type cell is epithelial-like with no processes (arrows), whereas the “N” type is more neuronal-like with pyramidal shaped bodies (asterisk) and long processes (arrowheads)

References

    1. Ross RA, Spengler BA, Biedler JL. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst. 1983;71(4):741–747. - PubMed
    1. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V, Gallego C, Comella JX. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem. 2000;75(3):991–1003. - PubMed
    1. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978;38(11 Pt 1):3751–3757. - PubMed
    1. Adem A, Mattsson ME, Nordberg A, Pahlman S. Muscarinic receptors in human SH-SY5Y neuroblastoma cell line: regulation by phorbol ester and retinoic acid-induced differentiation. Brain Res. 1987;430(2):235–242. - PubMed
    1. Pahlman S, Odelstad L, Larsson E, Grotte G, Nilsson K. Phenotypic changes of human neuroblastoma cells in culture induced by 12-O-tetradecanoyl-phorbol-13-acetate. Int J Cancer. 1981;28(5):583–589. - PubMed