Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 19;8(8):e71164.
doi: 10.1371/journal.pone.0071164. eCollection 2013.

On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes

Affiliations

On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes

Christopher H Martin et al. PLoS One. .

Abstract

The colonization of new adaptive zones is widely recognized as one of the hallmarks of adaptive radiation. However, the adoption of novel resources during this process is rarely distinguished from phenotypic change because morphology is a common proxy for ecology. How can we quantify ecological novelty independent of phenotype? Our study is split into two parts: we first document a remarkable example of ecological novelty, scale-eating (lepidophagy), within a rapidly-evolving adaptive radiation of Cyprinodon pupfishes on San Salvador Island, Bahamas. This specialized predatory niche is known in several other fish groups, but is not found elsewhere among the 1,500 species of atherinomorphs. Second, we quantify this ecological novelty by measuring the time-calibrated phylogenetic distance in years to the most closely-related species with convergent ecology. We find that scale-eating pupfish are separated by 168 million years of evolution from the nearest scale-eating fish. We apply this approach to a variety of examples and highlight the frequent decoupling of ecological novelty from phenotypic divergence. We observe that novel ecology is not always tightly correlated with rates of phenotypic or species diversification, particularly within recent adaptive radiations, necessitating the use of additional measures of ecological novelty independent of phenotype.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Illustration of the phylogenetic novelty index applied to scale-eating in Cyprinodon sp. ‘bulldog’.
The most closely related species with convergent ecology are a clade of scale-eating cichlids from Lake Tanganyika, Perissodus spp. A simplified cladogram connecting these groups is illustrated with numbers at tips corresponding to the number of scale-eating (black) and non-scale-eating (red) species within the Cyprinodon and Tanganyikan haplochromine clades (note that thousands of additional outgroup species have been pruned and these species numbers are not presented). Phylogenetic novelty index (indicated by the green line; 168 million years in Table 3) is calculated from twice the divergence time (t) minus the estimated origin of scale-eating in each clade (a and b). The stem age of the Perissodus clade is used as a conservative estimate of the origin of scale-eating (b). Note that the phylogenetic novelty index is not the same if applied to scale-eating cichlids (Table 3), which have repeatedly colonized this niche within each Great Lake radiation. Also note the aggressive mimicry in Perissodus straelini and the crypsis of female Cyprinodon sp. ‘bulldog’. Photo credits: Jennifer O. Reynolds, Tony Terceira.
Figure 2
Figure 2. Diets of Cyprinodon sp. ‘bulldog’ (red), C. sp. ‘durophage’ (green), and C. sp. ‘normal’ (blue) in two hypersaline lakes on San Salvador Island, Bahamas.
a,b) Proportion of scales (mean ± SE) in stomach contents of each species in a) Crescent Pond and b) Little Lake populations. c,d) Relative trophic position (δ15N: mean ± SE) of each species from samples collected in March (first bar) and July (second bar) in a) Crescent Pond and b) Little Lake populations. Multiple samples of ‘bulldog’ and ‘durophage’ were not available in March in Little Lake.

References

    1. Moczek AP (2008) On the origins of novelty in development and evolution. BioEssays 30: 432–47. - PubMed
    1. Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63: 233–46. - PubMed
    1. Muller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Ann Rev Ecol Syst 22: 229–256.
    1. Nitecki NH (1990) Evolutionary Innovations. University of Chicago Press, Chicago.
    1. Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ, Benzing DH, et al.. (1997) Molecular evolution and adaptive radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guayana Shield. In: Molecular evolution and adaptive radiation (Givnish, TJ, Sytsma, KJ, eds), Cambridge University Press, Cambridge.

Publication types