Icaritin synergistically enhances the radiosensitivity of 4T1 breast cancer cells
- PMID: 23977023
- PMCID: PMC3744569
- DOI: 10.1371/journal.pone.0071347
Icaritin synergistically enhances the radiosensitivity of 4T1 breast cancer cells
Abstract
Icaritin (ICT) is a hydrolytic form of icariin isolated from plants of the genus Epimedium. This study was to investigate the radiosensitization effect of icaritin and its possible underlying mechanism using murine 4T1 breast cancer cells. The combination of Icaritin at 3 µM or 6 µM with 6 or 8 Gy of ionizing radiation (IR) in the clonogenic assay yielded an ER (enhancement ratio) of 1.18 or 1.28, CI (combination index) of 0.38 or 0.19 and DRI (dose reducing index) of 2.51 or 5.07, respectively. These strongly suggest that Icaritin exerted a synergistic killing (?) effect with radiation on the tumor cells. This effect might relate with bioactivities of ICT: 1) exert an anti-proliferative effect in a dose- and time-dependent manner, which is different from IR killing effect but likely work together with the IR effect; 2) suppress the IR-induced activation of two survival paths, ERK1/2 and AKT; 3) induce the G2/M blockage, enhancing IR killing effect; and 4) synergize with IR to enhance cell apoptosis. In addition, ICT suppressed angiogenesis in chick embryo chorioallantoic membrane (CAM) assay. Taken together, ICT is a new radiosensitizer and can enhance anti-cancer effect of IR or other therapies.
Conflict of interest statement
Figures






References
-
- Wu H, Lien EJ, Lien LL (2003) Chemical and pharmacological investigations of Epimedium species: a survey. Prog Drug Res 60: 1–57. - PubMed
-
- Shen P, Guo BL, Gong Y, Hong DY, Hong Y, et al. (2007) Taxonomic, genetic, chemical and estrogenic characteristics of Epimedium species. Phytochemistry 68: 1448–1458. - PubMed
-
- Zhu DY, Zhang XN, Du Y (2007) [Directed differentiation of mouse embryonic stem cells into neuronal cells induced by icaritin in vitro]. Zhejiang Da Xue Xue Bao Yi Xue Ban 36: 217–223. - PubMed
-
- Wang Z, Wang H, Wu J, Zhu D, Zhang X, et al. (2009) Enhanced co-expression of beta-tubulin III and choline acetyltransferase in neurons from mouse embryonic stem cells promoted by icaritin in an estrogen receptor-independent manner. Chem Biol Interact 179: 375–385. - PubMed
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Miscellaneous