Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 20;8(8):e71642.
doi: 10.1371/journal.pone.0071642. eCollection 2013.

A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus

Affiliations

A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus

Ahmed Abd El Wahed et al. PLoS One. .

Abstract

Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. FMDV RT-RPA primers and exo-probe sequences aligned with the consensus sequence of 100 FMDV 3D genes downloaded from the Genbank.
(Geneious® 6.1.5, Biomatters Limited, New Zealand). Mismatches are indicated in bold and underlined. The consensus sequence represents nt 7847–7961 of FMDV sequence JF749843. NNN are sites of the quencher and fluropohore in following order (BHQ1-dT) (Tetrahydrofuran) (FAM-dT). Y is C & T; R: A & G.
Figure 2
Figure 2. FMDV RT-RPA.
Fluorescence development over time using a dilution range of 107-101 molecules/µl of the FMDV RNA standard (Graph generated by ESEquant tubescanner software). F04+R20+P2 were employed and the analytical sensitivity was 102. 107 represented by black line; 106, gray; 105, red; 104, blue; 103, green; 102, cyan; 101, dark khaki; negative control, orange.
Figure 3
Figure 3. Performance and analytical sensitivity of the FMDV RT-RPA assay.
A: Semi-logarithmic regression of the data collected from eight FMDV RT-RPA test runs on the RNA standard using Prism Software. It yielded results between 4–10 minutes. B: Probit regression analysis using Statistica software on data of the eight runs. The limit of detection at 95% probability (1436 RNA molecules) is depicted by a triangle.
Figure 4
Figure 4. Comparison between real-time RT-RPA and RT-PCR for the detection of FMDV in clinical samples During Egypt 2012 FMD outbreak.
Forty-five RNA extracts of samples collected from suspected cases of FMDV were screened. Linear regression analysis of RT-RPA threshold time (Y axis) and RT-PCR cycle threshold values (X axis) were determined by Prism software. R squared value was 0.26.

References

    1. Knowles NJ, Samuel AR (2003) Molecular epidemiology of foot-and-mouth disease virus. Virus research 91: 65–80. - PubMed
    1. Boothroyd JC, Highfield PE, Cross GA, Rowlands DJ, Lowe PA, et al. (1981) Molecular cloning of foot and mouth disease virus genome and nucleotide sequences in the structural protein genes. Nature 290: 800–802. - PubMed
    1. Rodriguez LL, Gay CG (2011) Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert review of vaccines 10: 377–387. - PubMed
    1. Longjam N, Deb R, Sarmah AK, Tayo T, Awachat VB, et al. (2011) A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Veterinary medicine international 2011: 905768. - PMC - PubMed
    1. Ghoneim NH, Abdel-Karim AK, El-Shehawy L, Abdel-Moein KA (2010) Foot and mouth disease in animals in Sharkia governorate - Egypt. Transboundary and emerging diseases 57: 19–21. - PubMed

Publication types

MeSH terms