Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes
- PMID: 23980176
- PMCID: PMC3785791
- DOI: 10.1073/pnas.1314829110
Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes
Abstract
Coordinated regulation of oocyte and ovarian follicular development is essential for fertility. In particular, the progression of meiosis, a germ cell-specific cell division that reduces the number of chromosomes from diploid to haploid, must be arrested until just before ovulation. Follicular somatic cells are well-known to impose this arrest, which is essential for oocyte-follicle developmental synchrony. Follicular somatic cells sustain meiotic arrest via the natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system, and possibly also via high levels of the purine hypoxanthine in the follicular fluid. Upon activation by the ligand NPPC, NPR2, the predominant guanylyl cyclase in follicular somatic cells, produces cyclic guanosine monophosphate (cGMP), which maintains meiotic arrest after transfer to the oocyte via gap junctions. Here we report that both the NPPC/NPR2 system and hypoxanthine require the activity of inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme required for the production of guanylyl metabolites and cGMP. Furthermore, oocyte-derived paracrine factors, particularly the growth differentiation factor 9-bone morphogenetic protein 15 heterodimer, promote expression of Impdh and Npr2 and elevate cGMP levels in cumulus cells. Thus, although the somatic compartment of ovarian follicles plays an essential role in the maintenance of oocyte meiotic arrest, as has been known for many years, this function of the somatic cells is surprisingly regulated by signals from the oocyte itself.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Cho WK, Stern S, Biggers JD. Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J Exp Zool. 1974;187(3):383–386. - PubMed
-
- Magnusson C, Hillensjö T. Inhibition of maturation and metabolism in rat oocytes by cyclic AMP. J Exp Zool. 1977;201(1):139–147. - PubMed
-
- Vivarelli E, Conti M, De Felici M, Siracusa G. Meiotic resumption and intracellular cAMP levels in mouse oocytes treated with compounds which act on cAMP metabolism. Cell Differ. 1983;12(5):271–276. - PubMed
-
- Aberdam E, Hanski E, Dekel N. Maintenance of meiotic arrest in isolated rat oocytes by the invasive adenylate cyclase of Bordetella pertussis. Biol Reprod. 1987;36(3):530–535. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
