Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jul;11(1):111-9.
doi: 10.1016/0168-8278(90)90280-5.

Metabolism and effects on biliary lipid secretion of murocholic acid in the hamster

Affiliations

Metabolism and effects on biliary lipid secretion of murocholic acid in the hamster

M Parquet et al. J Hepatol. 1990 Jul.

Abstract

The metabolism of murocholic acid (MC), a 6 beta-hydroxylated bile acid, was investigated after intravenous (i.v.), intraduodenal (i.d.) or intragastric (i.g.) administration to bile fistula hamsters. The effects on biliary cholesterol and phospholipid secretion were measured during intravenous infusions of increasing doses of [3H]MC. At an infusion rate of 0.1 or 1 mumol.min-1.kg-1, the hepatic uptake was effective. More than 90% of the dose was recovered in bile within 4 h. A bolus injection of 500 micrograms of [3H]MC in the duodenum led to a rapid and efficient biliary secretion of radioactivity. Increasing i.v. infused doses of MC had no effect on bile flow or biliary cholesterol output compared to the controls. Phospholipid secretion was significantly reduced (0.113 mumol.min-1.kg-1 versus 0.238 mumol.min-1.kg-1 in in controls per mumol.min-1.kg-1 of excreted bile acids) as MC progressively replaced the endogenous bile acid pool in bile. After i.v. and i.d. administration, MC was secreted in bile as glyco and tauro conjugates without additional hepatic hydroxylation, sulfation or glucuronidation. The i.g. ingestion of MC followed by the faecal analysis of metabolites showed the formation of hyodeoxycholic acid and 3 alpha-OH-6-oxo-5 beta-cholan-24-oic acid. An equivalent experiment with hyodeoxycholic acid gave MC and the same oxo bile acid. We concluded that MC is metabolized by the hamster liver as an endogenous bile acid, which undergoes intestinal bacterial transformation into a 6-oxo derivative and is then reduced into hyodeoxycholic acid. This process is completely reversible.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types

LinkOut - more resources