Functional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR
- PMID: 23986201
- PMCID: PMC4109618
- DOI: 10.1152/ajpcell.00067.2013
Functional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR
Abstract
Vacuolar ATPases (V-ATPases) are highly conserved proton pumps that regulate organelle pH. Epithelial luminal pH is also regulated by cAMP-dependent traffic of specific subunits of the V-ATPase complex from endosomes into the apical membrane. In the intestine, cAMP-dependent traffic of cystic fibrosis transmembrane conductance regulator (CFTR) channels and the sodium hydrogen exchanger (NHE3) in the brush border regulate luminal pH. V-ATPase was found to colocalize with CFTR in intestinal CFTR high expresser (CHE) cells recently. Moreover, apical traffic of V-ATPase and CFTR in rat Brunner's glands was shown to be dependent on cAMP/PKA. These observations support a functional relationship between V-ATPase and CFTR in the intestine. The current study examined V-ATPase and CFTR distribution in intestines from wild-type, CFTR(-/-) mice and polarized intestinal CaCo-2BBe cells following cAMP stimulation and inhibition of CFTR/V-ATPase function. Coimmunoprecipitation studies examined V-ATPase interaction with CFTR. The pH-sensitive dye BCECF determined proton efflux and its dependence on V-ATPase/CFTR in intestinal cells. cAMP increased V-ATPase/CFTR colocalization in the apical domain of intestinal cells and redistributed the V-ATPase Voa1 and Voa2 trafficking subunits from the basolateral membrane to the brush border membrane. Voa1 and Voa2 subunits were localized to endosomes beneath the terminal web in untreated CFTR(-/-) intestine but redistributed to the subapical cytoplasm following cAMP treatment. Inhibition of CFTR or V-ATPase significantly decreased pHi in cells, confirming their functional interdependence. These data establish that V-ATPase traffics into the brush border membrane to regulate proton efflux and this activity is dependent on CFTR in the intestine.
Keywords: CFTR; V-ATPase; cAMP-regulated traffic; intestine.
Figures
References
-
- al-Awqati Q, Barasch J, Landry D. Chloride channels of intracellular organelles and their potential role in cystic fibrosis. J Exp Biol 172: 245–266, 1992 - PubMed
-
- Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 285: 24676–24685, 2010 - PMC - PubMed
-
- Ameen N, Apodaca G. Defective CFTR apical endocytosis and enterocyte brush border in myosin VI-deficient mice. Traffic 8: 998–1006, 2007 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
