Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 1;63(1):66-82.
doi: 10.1093/sysbio/syt059. Epub 2013 Aug 29.

Robustness to divergence time underestimation when inferring species trees from estimated gene trees

Affiliations

Robustness to divergence time underestimation when inferring species trees from estimated gene trees

Michael DeGiorgio et al. Syst Biol. .

Abstract

To infer species trees from gene trees estimated from phylogenomic data sets, tractable methods are needed that can handle dozens to hundreds of loci. We examine several computationally efficient approaches-MP-EST, STAR, STEAC, STELLS, and STEM-for inferring species trees from gene trees estimated using maximum likelihood (ML) and Bayesian approaches. Among the methods examined, we found that topology-based methods often performed better using ML gene trees and methods employing coalescent times typically performed better using Bayesian gene trees, with MP-EST, STAR, STEAC, and STELLS outperforming STEM under most conditions. We examine why the STEM tree (also called GLASS or Maximum Tree) is less accurate on estimated gene trees by comparing estimated and true coalescence times, performing species tree inference using simulations, and analyzing a great ape data set keeping track of false positive and false negative rates for inferred clades. We find that although true coalescence times are more ancient than speciation times under the multispecies coalescent model, estimated coalescence times are often more recent than speciation times. This underestimation can lead to increased bias and lack of resolution with increased sampling (either alleles or loci) when gene trees are estimated with ML. The problem appears to be less severe using Bayesian gene-tree estimates.

PubMed Disclaimer

Publication types