Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 22;8(8):e72393.
doi: 10.1371/journal.pone.0072393. eCollection 2013.

Rapid and tunable control of protein stability in Caenorhabditis elegans using a small molecule

Affiliations

Rapid and tunable control of protein stability in Caenorhabditis elegans using a small molecule

Ukrae Cho et al. PLoS One. .

Abstract

Destabilizing domains are conditionally unstable protein domains that can be fused to a protein of interest resulting in degradation of the fusion protein in the absence of stabilizing ligand. These engineered protein domains enable rapid, reversible and dose-dependent control of protein expression levels in cultured cells and in vivo. To broaden the scope of this technology, we have engineered new destabilizing domains that perform well at temperatures of 20-25°C. This raises the possibility that our technology could be adapted for use at any temperature. We further show that these new destabilizing domains can be used to regulate protein concentrations in C. elegans. These data reinforce that DD can function in virtually any organism and temperature.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Schematic showing that the stability of a protein of interest (POI) fused to a destabilizing domain (DD) can be controlled using a high-affinity, stabilizing ligand.
Figure 2
Figure 2. Temperature dependence of existing DDs.
Destabilizing domains derived from either FKBP or ecDHFR were fused to the N-terminus of YFP (F-Y and D-Y) or the C-terminus of YFP (Y-F and Y-D). The indicated fusion proteins were stably expressed in NIH 3T3 cells for 24 h treated with vehicle (–) or stabilizing ligand (+, 2 µM Shield-1 for FKBP-derived DD and 10 µM trimethoprim for ecDHFR-derived DD) at 25°C or 37°C. The expression levels of the fusion proteins were then measured by flow cytometry. (FKBP mutations in F-Y: L106P, Y-F: E31G/R71G/K105E, DHFR mutations in D-Y: R12Y/G67S/Y100I, Y-D: R12H/N18T/A19V/G67S).
Figure 3
Figure 3. Ligand-dependent stability of new DDs screened at 25°C.
NIH 3T3 cells were stably transduced with the indicated ecDHFR mutants fused to YFP and treated with vehicle (–) or 10 µM trimethoprim (+) for 24 hours at 25°C. (37°C DDs are the ones engineered at 37°C; same mutants as Y-D and D-Y in Figure 2).
Figure 4
Figure 4. Trimethoprim rapidly stabilizes DDs expressed in C. elegans in a dose-dependent manner.
(A) Representative images of transgenic worms expressing eft-3pro:YFP-DD clone #7 from a single copy MosSci insertion grown in the absence or presence of 1 mM trimethoprim (TMP) for 24 hours at 20°C. (B) Wild type (N2) and YFP-DD transgenic worms were placed on plates containing 0.008, 0.04, 0.2, or 1 mM trimethoprim or control plates (DMSO vehicle only) as synchronized L1 larvae and imaged after 24 hours at 20°C. Graph shows average fold-induction of YFP expression relative to a non-transgenic control at increasing doses of trimethoprim (n>20 worms per dose). Error bars are ± SEM. (C) Wild-type (N2) or YFP-DD transgenic worms were placed on plates containing either 1 mM trimethoprim or DMSO vehicle control and imaged after 2, 6, 12, 24, and 48 h at 20°C. The graph shows the YFP expression of trimethoprim treated worms normalized to age-matched DMSO treated worms at each time point (n>20 worms per dose). Error bars are ± SEM. (D) YFP-DD transgenic worms were placed on plates containing 1 mM trimethoprim or DMSO vehicle control as L1s and grown for 24 hours, at which point one group was maintained on trimethoprim (“+TMP”), one was moved from trimethoprim to control plates (“washout”), and one was maintained on DMSO control plates. The graph shows background subtracted YFP expression of washout worms relative to +TMP worms at each timepoint (n>20 worms per condition). Error bars are ± SEM.

Similar articles

Cited by

References

    1. Banaszynski LA, Chen L-C, Maynard-Smith LA, Ooi AGL, Wandless TJ (2006) A Rapid, Reversible, and Tunable Method to Regulate Protein Function in Living Cells Using Synthetic Small Molecules. Cell 126: 995–1004. - PMC - PubMed
    1. Banaszynski LA, Sellmyer MA, Contag CH, Wandless TJ, Thorne SH (2008) Chemical Control of Protein Stability and Function in Living Mice. Nature Medicine 14: 1123–1127. - PMC - PubMed
    1. Leong HS, Lizardo MM, Ablack A, McPherson VA, Wandless TJ, et al. (2012) Imaging the Impact of Chemically Inducible Proteins on Cellular Dynamics in vivo . PLoS ONE 7: e30177. - PMC - PubMed
    1. Herm-Götz A, Agop-Nersesian C, Münter S, Grimley JS, Wandless TJ, et al. (2007) Rapid control of protein level in the apicomplexan Toxoplasma gondii . Nature Methods 4: 1003–1005. - PMC - PubMed
    1. Miyazaki Y, Imoto H, Chen L-C, Wandless TJ (2012) Destabilizing Domains Derived from the Human Estrogen Receptor. Journal of the American Chemical Society 134: 3942–3945. - PMC - PubMed

Publication types

MeSH terms

Substances