Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013:4:2339.
doi: 10.1038/ncomms3339.

A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions

Affiliations
Free article

A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions

Hairong Yue et al. Nat Commun. 2013.
Free article

Abstract

Hydrogenolysis of carbon-oxygen bonds is a versatile synthetic tool in organic synthesis. Copper-based catalysts have been intensively explored as the copper sites account for the highly selective hydrogenation of carbon-oxygen bonds. However, the inherent drawback of conventional copper-based catalysts is the deactivation by metal-particle growth and unstable surface Cu(0) and Cu(+) active species in the strongly reducing hydrogen and oxidizing carbon-oxygen atmosphere. Here we report the superior reactivity of a core (copper)-sheath (copper phyllosilicate) nanoreactor for carbon-oxygen hydrogenolysis of dimethyl oxalate with high efficiency (an ethanol yield of 91%) and steady performance (>300 h at 553 K). This nanoreactor, which possesses balanced and stable Cu(0) and Cu(+) active species, confinement effects, an intrinsically high surface area of Cu(0) and Cu(+) and a unique tunable tubular morphology, has potential applications in high-temperature hydrogenation reactions.

PubMed Disclaimer

Publication types

LinkOut - more resources