Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Aug 1;62(15):1592-6.
doi: 10.1021/ac00214a011.

Orientation effects on the electrophoretic mobility of rod-shaped molecules in free solution

Affiliations

Orientation effects on the electrophoretic mobility of rod-shaped molecules in free solution

P D Grossman et al. Anal Chem. .

Abstract

The effect of molecular orientation on the electrophoretic mobility of rod-shaped polylons as measured by free solution capillary electrophoresis is studied by using the tobacco mosaic virus (TMV) as a model solute. This orientational dependence of molecular mobility is measured by observing the influence of electrical field strength (up to 400 V/cm) on the electrophoretic mobility of TMV. The electrophoretic mobility of TMV increases with increasing field strength. This increase can be quantitatively correlated with the decrease in the translational frictional coefficient (f) due to the increasing alignment of TMV with the electric field. A model is developed relating the decrease in f to the alignment of TMV with the electric field through its polarizability and aspect ratio. To confirm the observed orientational affects on mobility, control experiments were performed with 0.364 micron diameter Latex spheres. Due to their spherical symmetry, no orientational effects would be expected. Indeed, no increase in mobility was observed for these spherical particles. Calculations are presented to demonstrate that the increase in mobility is unlikely to be caused by either the Wien effect or any temperature variation resulting from Joule heating of the electrophoresis buffer.

PubMed Disclaimer

Publication types