Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 28;5(8):285-94.
doi: 10.4329/wjr.v5.i8.285.

3.0 Tesla vs 1.5 Tesla breast magnetic resonance imaging in newly diagnosed breast cancer patients

Affiliations

3.0 Tesla vs 1.5 Tesla breast magnetic resonance imaging in newly diagnosed breast cancer patients

Reni S Butler et al. World J Radiol. .

Abstract

Aim: To compare 3.0 Tesla (T) vs 1.5T magnetic resonance (MR) imaging systems in newly diagnosed breast cancer patients.

Methods: Upon Institutional Review Board approval, a Health Insurance Portability and Accountability Act-compliant retrospective review of 147 consecutive 3.0T MR examinations and 98 consecutive 1.5T MR examinations in patients with newly diagnosed breast cancer between 7/2009 and 5/2010 was performed. Eleven patients who underwent neoadjuvant chemotherapy in the 3.0T group were excluded. Mammographically occult suspicious lesions (BIRADS Code 4 and 5) additional to the index cancer in the ipsilateral and contralateral breast were identified. Lesion characteristics and pathologic diagnoses were recorded, and results achieved with both systems compared. Statistical significance was analyzed using Fisher's exact test.

Results: In the 3.0T group, 206 suspicious lesions were identified in 55% (75/136) of patients and 96% (198/206) of these lesions were biopsied. In the 1.5T group, 98 suspicious lesions were identified in 53% (52/98) of patients and 90% (88/98) of these lesions were biopsied. Biopsy results yielded additional malignancies in 24% of patients in the 3.0T group vs 14% of patients in the 1.5T group (33/136 vs 14/98, P = 0.07). Average size and histology of the additional cancers was comparable. Of patients who had a suspicious MR imaging study, additional cancers were found in 44% of patients in the 3.0T group vs 27% in the 1.5T group (33/75 vs 14/52, P = 0.06), yielding a higher positive predictive value (PPV) for biopsies performed with the 3.0T system.

Conclusion: 3.0T MR imaging detected more additional malignancies in patients with newly diagnosed breast cancer and yielded a higher PPV for biopsies performed with the 3.0T system.

Keywords: 3 Tesla; Breast; Breast cancer; Breast magnetic resonance imaging; Cancer staging; Magnetic resonance imaging; Outcome; Technical.

PubMed Disclaimer

Figures

Figure 1
Figure 1
3.0Tesla axial T1-weighted fat-suppressed contrast enhanced images in 62-year-old woman with newly diagnosed left breast infiltrating ductal carcinoma show the index cancer with signal void due to biopsy marker (long arrow) in the superior lateral quadrant and a second mammographically occult multicentric lesion shown to represent DCIS (short arrow) in the superior medial quadrant (A), an additional multicentric lesion proven to represent an additional infiltrating ductal carcinoma (arrow) in the inferior lateral quadrant (B), and a suspicious contralateral lesion (arrow) confirmed as a benign papilloma (C).
Figure 2
Figure 2
1.5Tesla axial T1-weighted fat-suppressed contrast enhanced subtraction images in 53-year-old woman with newly diagnosed left breast infiltrating ductal carcinoma show a conglomerate of masses with signal void due to biopsy marker (arrow) in the left superior breast (A), and a mammographically occult rim-enhancing lesion (arrow) 2 cm inferior to the index cancer confirmed as an additional infiltrating ductal carcinoma (B). Note the lower contrast and spatial resolution evident on these images compared to the 3.0Tesla system.

References

    1. Hecht EM, Lee RF, Taouli B, Sodickson DK. Perspectives on body MR imaging at ultrahigh field. Magn Reson Imaging Clin N Am. 2007;15:449–465, viii. - PubMed
    1. Kuhl CK. Breast MR imaging at 3T. Magn Reson Imaging Clin N Am. 2007;15:315–320, vi. - PubMed
    1. Meeuwis C, Mann RM, Mus RD, Winkel A, Boetes C, Barentsz JO, Veltman J. MRI-guided breast biopsy at 3T using a dedicated large core biopsy set: feasibility and initial results. Eur J Radiol. 2011;79:257–261. - PubMed
    1. Soher BJ, Dale BM, Merkle EM. A review of MR physics: 3T versus 1.5T. Magn Reson Imaging Clin N Am. 2007;15:277–290, v. - PubMed
    1. Chatterji M, Mercado CL, Moy L. Optimizing 1.5-Tesla and 3-Tesla dynamic contrast-enhanced magnetic resonance imaging of the breasts. Magn Reson Imaging Clin N Am. 2010;18:207–224, viii. - PubMed

LinkOut - more resources