Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2013 Sep 3;17(5):R188.
doi: 10.1186/cc12872.

Effects of prehospital epinephrine during out-of-hospital cardiac arrest with initial non-shockable rhythm: an observational cohort study

Observational Study

Effects of prehospital epinephrine during out-of-hospital cardiac arrest with initial non-shockable rhythm: an observational cohort study

Yoshikazu Goto et al. Crit Care. .

Abstract

Introduction: Few clinical trials have provided evidence that epinephrine administration after out-of-hospital cardiac arrest (OHCA) improves long-term survival. Here we determined whether prehospital epinephrine administration would improve 1-month survival in OHCA patients.

Methods: We analyzed the data of 209,577 OHCA patients; the data were prospectively collected in a nationwide Utstein-style Japanese database between 2009 and 2010. Patients were divided into the initial shockable rhythm (n = 15,492) and initial non-shockable rhythm (n = 194,085) cohorts. The endpoints were prehospital return of spontaneous circulation (ROSC), 1-month survival, and 1-month favorable neurological outcomes (cerebral performance category scale, category 1 or 2) after OHCA. We defined epinephrine administration time as the time from the start of cardiopulmonary resuscitation (CPR) by emergency medical services personnel to the first epinephrine administration.

Results: In the initial shockable rhythm cohort, the ratios of prehospital ROSC, 1-month survival, and 1-month favorable neurological outcomes in the non-epinephrine group were significantly higher than those in the epinephrine group (27.7% vs. 22.8%, 27.0% vs. 15.4%, and 18.6% vs. 7.0%, respectively; all P < 0.001). However, in the initial non-shockable rhythm cohort, the ratios of prehospital ROSC and 1-month survival in the epinephrine group were significantly higher than those in the non-epinephrine group (18.7% vs. 3.0% and 3.9% vs. 2.2%, respectively; all P < 0.001) and there was no significant difference between the epinephrine and non-epinephrine groups for 1-month favorable neurological outcomes (P = 0.62). Prehospital epinephrine administration for OHCA patients with initial non-shockable rhythms was independently associated with prehospital ROSC (adjusted odds ratio [aOR], 8.83, 6.18, 4.32; 95% confidence interval [CI], 8.01-9.73, 5.82-6.56, 3.98-4.69; for epinephrine administration times ≤9 min, 10-19 min, and ≥20 min, respectively), with improved 1-month survival when epinephrine administration time was <20 min (aOR, 1.78, 1.29; 95% CI, 1.50-2.10, 1.17-1.43; for epinephrine administration times ≤9 min and 10-19 min, respectively), and with deteriorated 1-month favorable neurological outcomes (aOR, 0.63, 0.49; 95% CI, 0.48-0.80, 0.32-0.71; for epinephrine administration times 10-19 min and ≥20 min, respectively).

Conclusions: Prehospital epinephrine administration for OHCA patients with initial nonshockable rhythms was independently associated with achievement of prehospital ROSC and had association with improved 1-month survival when epinephrine administration time was <20 min.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Study profile showing participant selection. CPC, Cerebral Performance Categories; EMS, emergency medical services; ROSC, return of spontaneous circulation.

Comment in

References

    1. Kitamura T, Iwami T, Kawamura T, Nagao K, Tanaka H, Hiraide A. for the Implementation Working Group for the All-Japan Utstein Registry of the Fire and Disaster Management Agency. Nationwide public-access defibrillation in Japan. N Engl J Med. 2010;362:994–1004. doi: 10.1056/NEJMoa0906644. - DOI - PubMed
    1. Nakahara S, Tomio J, Nishida M, Morimura N, Ichikawa M, Sakamoto T. Association between timing of epinephrine administration and intact neurologic survival following out-of-hospital cardiac arrest in Japan: a population-based prospective observational study. Acad Emerg Med. 2012;19:782–792. doi: 10.1111/j.1553-2712.2012.01387.x. - DOI - PubMed
    1. Hayashi Y, Iwami T, Kitamura T, Nishiuchi T, Kajino K, Sakai T, Nishiyama C, Nitta M, Hiraide A, Kai T. Impact of early intravenous epinephrine administration on outcomes following out-of-hospital cardiac arrest. Circ J. 2012;76:1639–1645. doi: 10.1253/circj.CJ-11-1433. - DOI - PubMed
    1. ECC Committee, Subcommittees and Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2005;112(24 Suppl):IV1–IV203. - PubMed
    1. Sasson C, Rogers MAM, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2010;3:63–81. doi: 10.1161/CIRCOUTCOMES.109.889576. - DOI - PubMed

Publication types