Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013;4(5):107.
doi: 10.1186/scrt318.

Mechanically induced osteogenic lineage commitment of stem cells

Review

Mechanically induced osteogenic lineage commitment of stem cells

Julia C Chen et al. Stem Cell Res Ther. 2013.

Abstract

Bones adapt to accommodate the physical forces they experience through changes in architecture and mass. Stem cells differentiate into bone-forming osteoblasts, and mechanical stimulation is involved in this process. Various studies have applied controlled mechanical stimulation to stem cells and investigated the effects on osteogenic lineage commitment. These studies demonstrate that physical stimuli can induce osteogenic lineage commitment. Tension, fluid shear stress, substrate material properties, and cell shape are all factors that influence osteogenic differentiation. In particular, the level of tension is important. Also, rigid substrates with stiffness similar to collagenous bone induce osteogenic differentiation, while softer substrates induce other lineages. Finally, cells allowed to adhere over a larger area are able to differentiate towards the osteogenic lineage while cells adhering to a smaller area are restricted to the adipogenic lineage. Stem cells are able to sense their mechanical environments through various mechanosensors, including the cytoskeleton, focal adhesions, and primary cilia. The cytoskeleton provides a structural frame for the cell, and myosin interacts with actin to generate cytoskeletal tension, which is important for mechanically induced osteogenesis of stem cells. Adapter proteins link the cytoskeleton to integrins, which attach the cell to the substrate, forming a focal adhesion. A variety of signaling proteins are also associated with focal adhesions. Forces are transmitted to the substrate at these sites, and an intact focal adhesion is important for mechanically induced osteogenesis. The primary cilium is a single, immotile, antenna-like structure that extends from the cell into the extracellular space. It has emerged as an important signaling center, acting as a microdomain to facilitate biochemical signaling. Mechanotransduction is the process by which physical stimuli are converted into biochemical responses. When potential mechanosensors are disrupted, the activities of components of mechanotransduction pathways are also inhibited, preventing mechanically induced osteogenesis. Calcium, mitogen-activated protein kinase/extracellular signal-regulated kinase, Wnt, Yes-associated protein/transcriptional coactivator with PDZ-binding motif and RhoA/Rho kinase signaling are some of the mechanotransduction pathways proposed to be important. In this review, types of mechanical stimuli, mechanosensors, and key pathways involved in mechanically induced osteogenesis of stem cells are discussed.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Sources for stem cells contributing to bone formation. Mesenchymal stem cells (MSCs) reside within both the bone marrow cavity and the periosteum.
Figure 2
Figure 2
Cellular and pericellular mechanics. Strain, shear stress, substrate material properties and cell shape have been observed to affect osteogenesis of stem cells.
Figure 3
Figure 3
Mechanosensors. The cytoskeleton, focal adhesions and primary cilium are potentially important in stem cells for detecting and responding to physical stimuli.

Similar articles

Cited by

References

    1. Krahl H, Michaelis U, Pieper HG, Quack G, Montag M. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med. 1994;22:751–757. doi: 10.1177/036354659402200605. - DOI - PubMed
    1. Hall BK, Herring SW. Paralysis and growth of the musculoskeletal system in the embryonic chick. J Morphol. 1990;206:45–56. doi: 10.1002/jmor.1052060105. - DOI - PubMed
    1. Dietz FR. Effect of denervation on limb growth. J Orthop Res. 1989;7:292–303. doi: 10.1002/jor.1100070218. - DOI - PubMed
    1. Rodriguez JI, Garcia-Alix A, Palacios J, Paniagua R. Changes in the long bones due to fetal immobility caused by neuromuscular disease. A radiographic and histological study. J Bone Joint Surg Am. 1988;70:1052–1060. - PubMed
    1. Rodriguez JI, Palacios J, Garcia-Alix A, Pastor I, Paniagua R. Effects of immobilization on fetal bone development. A morphometric study in newborns with congenital neuromuscular diseases with intrauterine onset. Calcif Tissue Int. 1988;43:335–339. doi: 10.1007/BF02553275. - DOI - PubMed

Publication types

Substances