Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar-Apr;2(2):247-59.
doi: 10.1002/wdev.76. Epub 2012 May 29.

Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos

Affiliations
Review

Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos

Caterina Pegoraro et al. Wiley Interdiscip Rev Dev Biol. 2013 Mar-Apr.

Abstract

The neural crest is a population of highly migratory and multipotent cells, which arises from the border of the neural plate in vertebrate embryos. In the last few years, the molecular actors of neural crest early development have been intensively studied, notably by using the frog embryo, as a prime model for the analysis of the earliest embryonic inductions. In addition, tremendous progress has been made in understanding the molecular and cellular basis of Xenopus cranial neural crest migration, by combining in vitro and in vivo analysis. In this review, we examine how the action of previously known neural crest-inducing signals [bone morphogenetic protein (BMP), wingless-int (Wnt), fibroblast growth factor (FGF)] is controlled by newly discovered modulators during early neural plate border patterning and neural crest specification. This regulation controls the induction of key transcription factors that cooperate to pattern the premigratory neural crest progenitors. These data are discussed in the perspective of the gene regulatory network that controls neural and neural crest patterning. We then address recent findings on noncanonical Wnt signaling regulation, cell polarization, and collective cell migration which highlight how cranial neural crest cells populate their target tissue, the branchial arches, in vivo. More than ever, the neural crest stands as a powerful and attractive model to decipher complex vertebrate regulatory circuits in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources