Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 29;8(8):e72088.
doi: 10.1371/journal.pone.0072088. eCollection 2013.

Impact of vaccination on 14 high-risk HPV type infections: a mathematical modelling approach

Affiliations

Impact of vaccination on 14 high-risk HPV type infections: a mathematical modelling approach

Simopekka Vänskä et al. PLoS One. .

Abstract

The development of high-risk human papillomavirus (hrHPV) infection to cervical cancer is a complicated process. We considered solely hrHPV infections, thus avoiding the confounding effects of disease progression, screening, and treatments. To analyse hrHPV epidemiology and to estimate the overall impact of vaccination against infections with hrHPVs, we developed a dynamic compartmental transmission model for single and multiple infections with 14 hrHPV types. The infection-related parameters were estimated using population-based sexual behaviour and hrHPV prevalence data from Finland. The analysis disclosed the important role of persistent infections in hrHPV epidemiology, provided further evidence for a significant natural immunity, and demonstrated the dependence of transmission probability estimates on the model structure. The model predicted that vaccinating girls at 80% coverage will result in a 55% reduction in the overall hrHPV prevalence and a higher 65% reduction in the prevalence of persistent hrHPV infections in females. In males, the reduction will be 42% in the hrHPV prevalence solely by the herd effect from the 80% coverage in girls. If such high coverage among girls is not reached, it is still possible to reduce the female hrHPV prevalence indirectly by the herd effect if also boys are included in the vaccination program. On the other hand, any herd effects in older unvaccinated cohorts were minor. Limiting the epidemiological model to infection yielded improved understanding of the hrHPV epidemiology and of mechanisms with which vaccination impacts on hrHPV infections.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have read the journal’s policy and have the following conflicts: ML has received grants for his HPV vaccination studies through his employer University of Tampere, Finland from Merck & Co., Inc. and GSK Biologicals; PN has been working as a consultant for GSK and Sanofi Pasteur-MSD, TK Nationwide effectiveness study of the 10-valtent pneumococcal conjugate vaccine. Collaborative study was mainly funded by GSK; DA, as an employee of Väestöliitto, participated as the principal investigator in research projects of Merck and GSK during the last 5 years. Väestöliitto has been paid for conducting the research. He has given lectures at educational occasions organized by health care and medical companies and participated in various meetings paid by these (Merck, GSK, Bayer, WHO). Membership in the National Expert Group (2008–2011) on HPV Related Disease Prevention: TL HS PN TK DA ML. This does not alter the authors’ adherence to all of the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Data and Modelling Overview.
The parameters of the sexual contact structure were estimated from the School Health Promotion study , FINSEX 2007 study , and marriage statistics . The type-specific clearance of new infections was estimated from the control arm of PATRICIA phase III HPV vaccine study in Finland . The contact structure and the type-specific clearance rates were used as input for the single-type transmission models. The multiple-type transmission model ties together the single-type models and produces the hrHPV prevalence, which was fitted to the age-specific hrHPV prevalence data by calibrating three model parameters (transmission probability, natural immunity, and the clearance rate of persistent infections).
Figure 2
Figure 2. The Pattern of Sexual Contacts in Finland.
Upper panel: the age-specific annual mean numbers of new sexual partners by lifetime partner number with the observed numbers (asterisks). Lower panel: the age-specific stratification of the population by lifetime partner number and the corresponding data (asterisks).
Figure 3
Figure 3. Transmission Model Structure for a Single HPV Type.
The vertical flow corresponds to changes in the epidemiologic states susceptible (S), infectious (I), recovered (R), and vaccine-protected (V). The flow from left to right corresponds to an increasing lifetime partner number (n). The arrows describe possible transitions between different states: 1. Acquisition of a new partner without acquiring infection; 2. Acquisition of a new partner with acquiring infection (primary force of infection); 3. Acquisition of infection from the current partner (secondary force of infection, for n >0 only); 4. Clearance of infection; 5. Waning natural immunity; 6–7 and 10. Acquisition of a new partner for infected, recovered, and vaccine protected; 8. Take of vaccine protection; 9. Waning vaccine induced protection. The formulae for all transition rates are presented in File S1.
Figure 4
Figure 4. The Age-specific High-risk HPV (hrHPV) Prevalence in the Steady-state Before and After Vaccination.
Unless otherwise stated, the results pertain to females under the base-case scenario. (a) The model prediction on the current hrHPV prevalence (upper curve) with the observed data (asterisks). The lower curves show the prevalence for three different single hrHPV types with low, moderate and fast clearance of infection (see Materials and Methods); (b) the prevalence of hrHPV and persistent hrHPV before and after vaccination; (c) hrHPV prevalence at different times since the onset of the vaccination program; (d) hrHPV prevalence in females and males, before and after vaccination; (e) HPV16 prevalence under different vaccine scenarios, waning vaccine protection induces a second peak in the prevalence curve; (f) model fits to hrHPV data under different waning rates of natural immunity (base-case, SIR, 0.2 1/year waning rate) and the corresponding post-vaccination prevalences.

Similar articles

Cited by

References

    1. Dillner J, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, et al. (2010) Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. BMJ 341: c3493. - PMC - PubMed
    1. Lehtinen M, Paavonen J, Wheeler CM, Jaisamrarn U, Garland SM, et al. (2012) Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol 13: 89–99. - PubMed
    1. Munoz N, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, et al. (2010) Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst 102: 325–339. - PubMed
    1. Wheeler CM, Castellsague X, Garland SM, Szarewski A, Paavonen J, et al. (2012) Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol 13: 100–110. - PubMed
    1. Wheeler CM, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, et al. (2009) The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16–26 years. J Infect Dis 199: 936–944. - PubMed

Publication types

MeSH terms

Substances