Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov 1;539(1):81-6.
doi: 10.1016/j.abb.2013.08.016. Epub 2013 Sep 4.

Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study

Affiliations

Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study

Ari Zeida et al. Arch Biochem Biophys. .

Abstract

Since peroxynitrite was identified as a pathophysiological agent it has been implicated in a great variety of cellular processes. Particularly, peroxynitrite mediated oxidation of cellular thiol-containing compounds such as Cys residues, is a key event which has been extensively studied. Although great advances have been accomplished, the reaction is not completely understood at the atomic level. Aiming to shed light on this subject, we present an integrated kinetic and theoretical study of the oxidation of free Cys by peroxynitrite. We determined pH-independent thermodynamic activation parameters, namely those corresponding to the reaction between the reactive species: Cys thiolate and peroxynitrous acid. We found a pH-independent activation energy of 8.2 ± 0.6 kcal/mol. Simulations were performed using state of the art hybrid quantum-classical (QM-MM) molecular dynamics simulations. Our results are consistent with a SN2 mechanism, with Cys sulfenic acid and nitrite anion as products. The activation barrier is mostly due to the alignment of sulfur's thiolate atom with the oxygen atoms of the peroxide, along with the concomitant charge reorganization and important changes in the solvation profile. This work provides an atomic detailed description of the reaction mechanism and a framework to understand the environment effects on peroxynitrite reactivity with protein thiols.

Keywords: Cysteine; Oxidation; Peroxynitrite; Redox homeostasis; S(N)2; Thiols.

PubMed Disclaimer

Publication types

LinkOut - more resources