Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar;20(3):207-12.
doi: 10.4158/EP13186.OR.

Statistical transformation and the interpretation of inpatient glucose control data

Affiliations

Statistical transformation and the interpretation of inpatient glucose control data

George E Saulnier et al. Endocr Pract. 2014 Mar.

Abstract

Objective: To introduce a statistical method of assessing hospital-based non-intensive care unit (non-ICU) inpatient glucose control.

Methods: Point-of-care blood glucose (POC-BG) data from hospital non-ICUs were extracted for January 1 through December 31, 2011. Glucose data distribution was examined before and after Box-Cox transformations and compared to normality. Different subsets of data were used to establish upper and lower control limits, and exponentially weighted moving average (EWMA) control charts were constructed from June, July, and October data as examples to determine if out-of-control events were identified differently in nontransformed versus transformed data.

Results: A total of 36,381 POC-BG values were analyzed. In all 3 monthly test samples, glucose distributions in nontransformed data were skewed but approached a normal distribution once transformed. Interpretation of out-of-control events from EWMA control chart analyses also revealed differences. In the June test data, an out-of-control process was identified at sample 53 with nontransformed data, whereas the transformed data remained in control for the duration of the observed period. Analysis of July data demonstrated an out-of-control process sooner in the transformed (sample 55) than nontransformed (sample 111) data, whereas for October, transformed data remained in control longer than nontransformed data.

Conclusion: Statistical transformations increase the normal behavior of inpatient non-ICU glycemic data sets. The decision to transform glucose data could influence the interpretation and conclusions about the status of inpatient glycemic control. Further study is required to determine whether transformed versus nontransformed data influence clinical decisions or evaluation of interventions.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources