Can we build a truly high performance computer which is flexible and transparent?
- PMID: 24018904
- PMCID: PMC3767948
- DOI: 10.1038/srep02609
Can we build a truly high performance computer which is flexible and transparent?
Abstract
State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today's computers. One limitation is silicon's rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec(-1) and on/off ratio of near 10(4) within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of ~7% in the visible spectrum.
Figures







Similar articles
-
Transformational silicon electronics.ACS Nano. 2014 Feb 25;8(2):1468-74. doi: 10.1021/nn405475k. Epub 2014 Feb 3. ACS Nano. 2014. PMID: 24476361
-
Single-Crystalline Silicon Frameworks: A New Platform for Transparent Flexible Optoelectronics.Adv Mater. 2021 Jun;33(24):e2008171. doi: 10.1002/adma.202008171. Epub 2021 May 8. Adv Mater. 2021. PMID: 33963781
-
Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.ACS Nano. 2015 May 26;9(5):4872-81. doi: 10.1021/nn5064216. Epub 2015 Apr 24. ACS Nano. 2015. PMID: 25817336
-
Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits.Adv Mater. 2010 Dec 14;22(47):5332-49. doi: 10.1002/adma.201001375. Adv Mater. 2010. PMID: 20878625 Review.
-
Germanium Based Field-Effect Transistors: Challenges and Opportunities.Materials (Basel). 2014 Mar 19;7(3):2301-2339. doi: 10.3390/ma7032301. Materials (Basel). 2014. PMID: 28788569 Free PMC article. Review.
Cited by
-
Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing.Sensors (Basel). 2022 May 25;22(11):4000. doi: 10.3390/s22114000. Sensors (Basel). 2022. PMID: 35684621 Free PMC article.
-
Fast Flexible Transistors with a Nanotrench Structure.Sci Rep. 2016 Apr 20;6:24771. doi: 10.1038/srep24771. Sci Rep. 2016. PMID: 27094686 Free PMC article.
-
High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications.Sci Rep. 2017 Feb 2;7:42001. doi: 10.1038/srep42001. Sci Rep. 2017. PMID: 28150807 Free PMC article.
-
Developing a Vital Signal Detection Electrode for Fabric Substrate Using a High-Performance Conductive Carbon-Based Ink.IEEE Open J Eng Med Biol. 2024 Jul 19;6:390-399. doi: 10.1109/OJEMB.2024.3431030. eCollection 2025. IEEE Open J Eng Med Biol. 2024. PMID: 40657056 Free PMC article.
References
-
- Forrest S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004). - PubMed
-
- Reuss R. H. et al. Macroelectronics: Pers. Tech. and App. Proc. IEEE 93(7), 1239 (2005).
-
- Klauk H., Zschieschang U., Pflaum J. & Halik M. Ultralow-power organic complementary circuits. Nature 445, 745 (2007). - PubMed
-
- Xia Y., Kalihari V. & Frisbie C. D. Tetracene air-gap single-crystal field-effect transistors. Appl. Phys. Lett. 90, 162106 (2007).
-
- Kang S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230 (2007). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials