Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;14(12):1467-80.
doi: 10.2217/pgs.13.133.

Impact of CYP3A5 genotype on tacrolimus versus midazolam clearance in renal transplant recipients: new insights in CYP3A5-mediated drug metabolism

Affiliations

Impact of CYP3A5 genotype on tacrolimus versus midazolam clearance in renal transplant recipients: new insights in CYP3A5-mediated drug metabolism

Hylke de Jonge et al. Pharmacogenomics. 2013 Sep.

Abstract

Background & aim: In vitro studies have identified both midazolam and tacrolimus as dual CYP3A4 and CYP3A5 substrates. In vivo; however, the CYP3A5 genotype has a marked impact on tacrolimus pharmacokinetics, whereas it seems not to affect midazolam pharmacokinetics. The aim of the current study was to explore this paradigm in a relevant clinical setting.

Patients & methods: A case-control study in 80 tacrolimus-treated renal transplant recipients comparing systemic and apparent oral midazolam clearance and tacrolimus pharmacokinetics in CYP3A5 expressers (CYP3A5*1 allele carriers) and CYP3A5 nonexpressers (CYP3A5*3/*3) was performed.

Results: CYP3A5 expressers display an approximately 2.4-fold higher tacrolimus clearance as compared with CYP3A5 nonexpressers, whereas there are no differences in systemic and apparent oral midazolam clearance.

Conclusion: These data confirm that in vivo CYP3A5 plays an important role in tacrolimus metabolism, while its contribution to midazolam metabolism in a relevant study population is limited. Furthermore, these data suggest that midazolam is to be considered as a phenotypic probe for in vivo CYP3A4 activity rather than combined CYP3A4 and CYP3A5 activity.

PubMed Disclaimer

Publication types

LinkOut - more resources