Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec;6(6):1229-35.
doi: 10.1161/CIRCEP.113.000759. Epub 2013 Sep 15.

Ablation of multiwavelet re-entry guided by circuit-density and distribution: maximizing the probability of circuit annihilation

Affiliations

Ablation of multiwavelet re-entry guided by circuit-density and distribution: maximizing the probability of circuit annihilation

Richard T Carrick et al. Circ Arrhythm Electrophysiol. 2013 Dec.

Abstract

Background: A key mechanism responsible for atrial fibrillation is multiwavelet re-entry (MWR). We have previously demonstrated improved efficiency of ablation when lesions were placed in regions of high circuit-density. In this study, we undertook a quantitative assessment of the relative effect of ablation on the probability of MWR termination and the inducibility of MWR, as a function of lesion length and circuit-density overlap.

Methods and results: We used a computational model to simulate MWR in tissues with (and without) localized regions of decreased action potential duration and increased intercellular resistance. We measured baseline circuit-density and distribution. We then assessed the effect of various ablation lesion sets on the inducibility and duration of MWR as a function of ablation lesion length and overlap with circuit-density. Higher circuit-density reproducibly localized to regions of shorter wavelength. Ablation lines with high circuit-density overlap showed maximum decreases in duration of MWR at lengths equal to the distance from the tissue boundary to the far side of the high circuit-density region (high-overlap, -43.5% [confidence interval, -22.0% to -65.1%] versus low-overlap, -4.4% [confidence interval, 7.3% to -16.0%]). Further ablation (beyond the length required to cross the high circuit-density region) provided minimal further reductions in duration and increased inducibility.

Conclusions: Ablation at sites of high circuit-density most efficiently decreased re-entrant duration while minimally increasing inducibility. Ablation lines delivered at sites of low circuit-density minimally decreased duration yet increased inducibility of MWR.

Keywords: arrhythmias, cardiac; atrial fibrillation; catheter ablation; electrophysiology.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources