Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 Jan;66(1):8-17.
doi: 10.1161/01.res.66.1.8.

Regulation of large cerebral arteries and cerebral microvascular pressure

Affiliations
Free article
Review

Regulation of large cerebral arteries and cerebral microvascular pressure

F M Faraci et al. Circ Res. 1990 Jan.
Free article

Abstract

Resistance of large arteries appears to be greater in the cerebral circulation than in other vascular beds. Large arteries contribute importantly to total cerebral vascular resistance and are major determinants of local microvascular pressure. Recent studies have shown that resistance of large arteries and cerebral microvascular pressure are affected by several physiological stimuli, including changes in systemic blood pressure, increases in cerebral metabolism, activity of sympathetic nerves, and humoral stimuli such as circulating vasopressin and angiotensin. Stimuli such as sympathetic stimulation and vasopressin produce selective responses of large arteries and, thereby, regulate microvascular pressure without a significant change in cerebral blood flow. These findings lead to the new hypothesis that the brain may be sensitive to changes in cerebral microvascular pressure, resulting in activation of compensatory neurohumoral mechanisms. Important changes occur in large cerebral arteries under pathophysiological conditions. Chronic hypertension increases resistance of large cerebral arteries, which protects the microcirculation against hypertension. Atherosclerosis potentiates constrictor responses of large cerebral arteries to serotonin and thromboxane, which may contribute to vasospasm and transient ischemic attacks.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources