Brain network alterations in Alzheimer's disease measured by eigenvector centrality in fMRI are related to cognition and CSF biomarkers
- PMID: 24039033
- PMCID: PMC6869112
- DOI: 10.1002/hbm.22335
Brain network alterations in Alzheimer's disease measured by eigenvector centrality in fMRI are related to cognition and CSF biomarkers
Abstract
Recent imaging studies have demonstrated functional brain network changes in patients with Alzheimer's disease (AD). Eigenvector centrality (EC) is a graph analytical measure that identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. This study used voxel-wise EC mapping (ECM) to analyze individual whole-brain resting-state functional magnetic resonance imaging (MRI) scans in 39 AD patients (age 67 ± 8) and 43 healthy controls (age 69 ± 7). Between-group differences were assessed by a permutation-based method. Associations of EC with biomarkers for AD pathology in cerebrospinal fluid (CSF) and Mini Mental State Examination (MMSE) scores were assessed using Spearman correlation analysis. Decreased EC was found bilaterally in the occipital cortex in AD patients compared to controls. Regions of increased EC were identified in the anterior cingulate and paracingulate gyrus. Across groups, frontal and occipital EC changes were associated with pathological concentrations of CSF biomarkers and with cognition. In controls, decreased EC values in the occipital regions were related to lower MMSE scores. Our main finding is that ECM, a hypothesis-free and computationally efficient analysis method of functional MRI (fMRI) data, identifies changes in brain network organization in AD patients that are related to cognition and underlying AD pathology. The relation between AD-like EC changes and cognitive performance suggests that resting-state fMRI measured EC is a potential marker of disease severity for AD.
Keywords: Alzheimer's disease; amyloid-beta; cognition; functional connectivity; resting-state fMRI.
Copyright © 2013 Wiley Periodicals, Inc.
Figures





References
-
- Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M (2012): Resting state fMRI in Alzheimer's disease: Beyond the default mode network. Neurobiol Aging 33:1564‐1578. - PubMed
-
- Bavelas A (1948): A mathematical model for group structure. Anthropology 7:16‐39.
-
- Binnewijzend MA, Schoonheim MM, Sanz‐Arigita E, Wink AM, van der Flier WM, Tolboom N, Adriaanse SM, Damoiseaux JS, Scheltens P, van Berckel BN, Barkhof F (2012): Resting‐state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiol Aging 33:2018‐2028. - PubMed
-
- Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn Reson Med 34:537‐541. - PubMed
-
- Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield‐Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010): Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734‐4739. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical