Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 14;14(10):3668-81.
doi: 10.1021/bm401036z. Epub 2013 Oct 3.

Self-tensioning aquatic caddisfly silk: Ca2+-dependent structure, strength, and load cycle hysteresis

Affiliations

Self-tensioning aquatic caddisfly silk: Ca2+-dependent structure, strength, and load cycle hysteresis

Nicholas N Ashton et al. Biomacromolecules. .

Abstract

Caddisflies are aquatic relatives of silk-spinning terrestrial moths and butterflies. Casemaker larvae spin adhesive silk fibers for underwater construction of protective composite cases. The central region of Hesperophylax sp. H-fibroin contains a repeating pattern of three conserved subrepeats, all of which contain one or more (SX)n motifs with extensively phosphorylated serines. Native silk fibers were highly extensible and displayed a distinct yield point, force plateau, and load cycle hysteresis. FTIR spectroscopy of native silk showed a conformational mix of random coil, β-sheet, and turns. Exchanging multivalent ions with Na(+) EDTA disrupted fiber mechanics, shifted the secondary structure ratios from antiparallel β-sheet toward random coil and turns, and caused the fibers to shorten, swell in diameter, and disrupted fiber birefringence. The EDTA effects were reversed by restoring Ca(2+). Molecular dynamic simulations provided theoretical support for a hypothetical structure in which the (pSX)n motifs may assemble into two- and three-stranded, Ca(2+)-stabilized β-sheets.

PubMed Disclaimer

Publication types

LinkOut - more resources