Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog
- PMID: 24059247
- PMCID: PMC3849619
- DOI: 10.1186/1475-925X-12-94
Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog
Abstract
Background: Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG.
Methods: We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation.
Results: Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications.
Conclusions: Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG.
Figures







Similar articles
-
Spindles in Svarog: framework and software for parametrization of EEG transients.Front Hum Neurosci. 2015 May 8;9:258. doi: 10.3389/fnhum.2015.00258. eCollection 2015. Front Hum Neurosci. 2015. PMID: 26005412 Free PMC article.
-
Consensus Matching Pursuit for multi-trial EEG signals.J Neurosci Methods. 2009 May 30;180(1):161-70. doi: 10.1016/j.jneumeth.2009.03.005. Epub 2009 Mar 21. J Neurosci Methods. 2009. PMID: 19427543
-
EEG/MEG source localization using source deflated matching pursuit.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6572-5. doi: 10.1109/IEMBS.2011.6091621. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22255845
-
Classification methods for ongoing EEG and MEG signals.Biol Res. 2007;40(4):415-37. Epub 2008 May 28. Biol Res. 2007. PMID: 18575676 Review.
-
Electroencephalography and Magnetoencephalography.2023 Jul 23. In: Colliot O, editor. Machine Learning for Brain Disorders [Internet]. New York, NY: Humana; 2023. Chapter 9. 2023 Jul 23. In: Colliot O, editor. Machine Learning for Brain Disorders [Internet]. New York, NY: Humana; 2023. Chapter 9. PMID: 37988523 Free Books & Documents. Review.
Cited by
-
EEG Transients in the Sigma Range During non-REM Sleep Predict Learning in Dogs.Sci Rep. 2017 Oct 11;7(1):12936. doi: 10.1038/s41598-017-13278-3. Sci Rep. 2017. PMID: 29021536 Free PMC article.
-
Novel cyclic homogeneous oscillation detection method for high accuracy and specific characterization of neural dynamics.Elife. 2024 Sep 6;12:RP91605. doi: 10.7554/eLife.91605. Elife. 2024. PMID: 39240267 Free PMC article.
-
ERP Analysis Using a Multi-Channel Matching Pursuit Algorithm.Neuroinformatics. 2022 Oct;20(4):827-862. doi: 10.1007/s12021-022-09575-6. Epub 2022 Mar 14. Neuroinformatics. 2022. PMID: 35286575
-
CB-1 receptor agonist drastically changes oscillatory activity, defining active sleep.Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2411063122. doi: 10.1073/pnas.2411063122. Epub 2025 Apr 18. Proc Natl Acad Sci U S A. 2025. PMID: 40249784
-
Electroencephalographic profiles for differentiation of disorders of consciousness.Biomed Eng Online. 2013 Oct 21;12:109. doi: 10.1186/1475-925X-12-109. Biomed Eng Online. 2013. PMID: 24143892 Free PMC article.
References
-
- Koubeissi MZ, Jouny CC, Blakeley JO, Bergey GK. Analysis of dynamics and propagation of parietal cingulate seizures with secondary mesial temporal involvement. Epilepsy Behav. 2009;12:108–112. doi: 10.1016/j.yebeh.2008.08.021. [ http://www.sciencedirect.com/science/article/pii/S1525505008002746] - DOI - PMC - PubMed
-
- Jouny CC, Adamolekun B, Franaszczuk PJ, Bergey GK. Intrinsic ictal dynamics at the seizure focus: effects of secondary generalization revealed by complexity measures. Epilepsia. 2007;12(2):297–304. doi: 10.1111/j.1528-1167.2006.00963.x. [ http://dx.doi.org/10.1111/j.1528-1167.2006.00963.x] - DOI - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources