Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 17:13:340.
doi: 10.1186/1472-6963-13-340.

Predictive performance of comorbidity measures in administrative databases for diabetes cohorts

Affiliations

Predictive performance of comorbidity measures in administrative databases for diabetes cohorts

Lisa M Lix et al. BMC Health Serv Res. .

Abstract

Background: The performance of comorbidity measures for predicting mortality in chronic disease populations and using ICD-9 diagnosis codes in administrative health data has been investigated in several studies, but less is known about predictive performance with ICD-10 data and for other health outcomes. This study investigated predictive performance of five comorbidity measures for population-based diabetes cohorts in administrative data. The objectives were to evaluate performance for: (a) disease-specific and general health outcomes, (b) data based on the ICD-9 and ICD-10 diagnoses, and (c) different age groups.

Methods: Performance was investigated for heart attack, stroke, amputation, renal disease, hospitalization, and death in all-age and age-specific cohorts. Hospital records, physician billing claims, and prescription drug records from one Canadian province were used to identify diabetes cohorts and measure comorbidity. The data were analysed using multiple logistic regression models and summarized using measures of discrimination, accuracy, and fit.

Results: In Cohort 1 (n = 29,058), for which only ICD-9 diagnoses were recorded in administrative data, the Elixhauser index showed good or excellent prediction for amputation, renal disease, and death and performed better than the Charlson index. Number of diagnoses was a good predictor of hospitalization. Similar results were obtained for Cohort 2 (n = 41,925), in which both ICD-9 and ICD-10 diagnoses were recorded in administrative data, although predictive performance was sometimes higher. For age-specific models of mortality, the Elixhauser index resulted in the largest improvement in predictive performance in all but the youngest age group.

Conclusions: Cohort age and the health outcome under investigation, but not the diagnosis coding system, may influence the predictive performance of comorbidity measure for studies about diabetes populations using administrative health data.

PubMed Disclaimer

References

    1. Virnig BA, McBean M. Administrative data for public health surveillance and planning. Annu Rev Public Health. 2001;22:213–230. doi: 10.1146/annurev.publhealth.22.1.213. - DOI - PubMed
    1. Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann Fam Med. 2009;7:357–363. doi: 10.1370/afm.983. - DOI - PMC - PubMed
    1. Grunau GL, Sheps S, Goldner EM, Ratner PA. Specific comorbidity risk adjustment was a better predictor of 5-year acute myocardial infarction mortality than general methods. J Clin Epidemiol. 2006;59:274–280. doi: 10.1016/j.jclinepi.2005.08.007. - DOI - PubMed
    1. St Germaine-Smith C, Liu M, Quan H, Wiebe S, Jette N. Development of an epilepsy-specific risk adjustment comorbidity index. Epilepsia. 2011;52:2161–2167. doi: 10.1111/j.1528-1167.2011.03292.x. - DOI - PubMed
    1. Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Saf. 2006;15:291–303. doi: 10.1002/pds.1200. - DOI - PubMed

Publication types