Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces
- PMID: 24063251
- DOI: 10.1021/jp402482q
Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces
Abstract
Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.
Similar articles
-
Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation.Langmuir. 2015 Jun 30;31(25):7106-16. doi: 10.1021/acs.langmuir.5b00680. Epub 2015 Jun 18. Langmuir. 2015. PMID: 26053228
-
Profile of the static permittivity tensor of water at interfaces: consequences for capacitance, hydration interaction and ion adsorption.Langmuir. 2012 May 22;28(20):7679-94. doi: 10.1021/la2051564. Epub 2012 Apr 23. Langmuir. 2012. PMID: 22414296
-
Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution.J Chem Phys. 2004 Jan 22;120(4):2056-68. doi: 10.1063/1.1636154. J Chem Phys. 2004. PMID: 15268342
-
Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions.Biophys Chem. 2012 Jun;167:43-59. doi: 10.1016/j.bpc.2012.04.002. Epub 2012 Apr 19. Biophys Chem. 2012. PMID: 22608112 Review.
-
Multiscale approaches and perspectives to modeling aqueous electrolytes and polyelectrolytes.Top Curr Chem. 2012;307:251-94. doi: 10.1007/128_2011_168. Top Curr Chem. 2012. PMID: 21630135 Review.
Cited by
-
Counting charges on membrane-bound peptides.Chem Sci. 2018 Apr 3;9(18):4285-4298. doi: 10.1039/c8sc00804c. eCollection 2018 May 14. Chem Sci. 2018. PMID: 29780560 Free PMC article.
-
Interfacial, Electroviscous, and Nonlinear Dielectric Effects on Electrokinetics at Highly Charged Surfaces.J Phys Chem B. 2021 May 13;125(18):4767-4778. doi: 10.1021/acs.jpcb.0c11280. Epub 2021 May 3. J Phys Chem B. 2021. PMID: 33939436 Free PMC article.
-
Incorporation of charged residues in the CYP2J2 F-G loop disrupts CYP2J2-lipid bilayer interactions.Biochim Biophys Acta. 2015 Oct;1848(10 Pt A):2460-2470. doi: 10.1016/j.bbamem.2015.07.015. Epub 2015 Jul 30. Biochim Biophys Acta. 2015. PMID: 26232558 Free PMC article.
-
Implicit Solvation Methods for Catalysis at Electrified Interfaces.Chem Rev. 2022 Jun 22;122(12):10777-10820. doi: 10.1021/acs.chemrev.1c00675. Epub 2021 Dec 20. Chem Rev. 2022. PMID: 34928131 Free PMC article. Review.
-
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10. Chem Rev. 2023. PMID: 36898130 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources