Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec;39(12):2393-405.
doi: 10.1016/j.ultrasmedbio.2013.08.003. Epub 2013 Sep 21.

Membrane perforation and recovery dynamics in microbubble-mediated sonoporation

Affiliations

Membrane perforation and recovery dynamics in microbubble-mediated sonoporation

Yaxin Hu et al. Ultrasound Med Biol. 2013 Dec.

Abstract

Transient sonoporation can essentially be epitomized by two fundamental processes: acoustically induced membrane perforation and its subsequent resealing. To provide insight into these processes, this article presents a new series of direct evidence on the membrane-level dynamics during and after an episode of sonoporation. Our direct observations were obtained from anchored fetal fibroblasts whose membrane topography was imaged in situ using real-time confocal microscopy. To facilitate controlled sonoporation at the single-cell level, microbubbles that can passively adhere to the cell membrane were first introduced at a 1:1 cell-to-bubble ratio. Single-pulse ultrasound exposure (1-MHz frequency, 10-cycle pulse duration, 0.85-MPa peak negative pressure in situ) was then applied to trigger microbubble pulsation/collapse, which, in turn, instigated membrane perforation. With this protocol, five membrane-level phenomena were observed: (i) localized perforation of the cell membrane was synchronized with the instant of ultrasound pulsing; (ii) perforation sites with temporal peak area <30 μm(2) were resealed successfully; (iii) during recovery, a thickened pore rim emerged, and its temporal progression corresponded with the pore closure action; (iv) membrane resealing, if successful, would generally be completed within 1 min of the onset of sonoporation, and the resealing time constant was estimated to be below 20 s; (v) membrane resealing would fail for overly large pores (>100 μm(2)) or in the absence of extracellular calcium ions. These findings serve to underscore the spatiotemporal complexity of membrane-level dynamics in sonoporation.

Keywords: Membrane perforation; Membrane recovery; Real-time confocal imaging; Sonoporation; Spatiotemporal dynamics; Surface topography.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources