Fully automatic plaque segmentation in 3-D carotid ultrasound images
- PMID: 24063959
- DOI: 10.1016/j.ultrasmedbio.2013.07.007
Fully automatic plaque segmentation in 3-D carotid ultrasound images
Abstract
Automatic segmentation of the carotid plaques from ultrasound images has been shown to be an important task for monitoring progression and regression of carotid atherosclerosis. Considering the complex structure and heterogeneity of plaques, a fully automatic segmentation method based on media-adventitia and lumen-intima boundary priors is proposed. This method combines image intensity with structure information in both initialization and a level-set evolution process. Algorithm accuracy was examined on the common carotid artery part of 26 3-D carotid ultrasound images (34 plaques ranging in volume from 2.5 to 456 mm(3)) by comparing the results of our algorithm with manual segmentations of two experts. Evaluation results indicated that the algorithm yielded total plaque volume (TPV) differences of -5.3 ± 12.7 and -8.5 ± 13.8 mm(3) and absolute TPV differences of 9.9 ± 9.5 and 11.8 ± 11.1 mm(3). Moreover, high correlation coefficients in generating TPV (0.993 and 0.992) between algorithm results and both sets of manual results were obtained. The automatic method provides a reliable way to segment carotid plaque in 3-D ultrasound images and can be used in clinical practice to estimate plaque measurements for management of carotid atherosclerosis.
Keywords: 3-D ultrasound; Carotid plaque; Level set; Segmentation.
Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
Similar articles
-
Three-dimensional ultrasound of carotid atherosclerosis: semiautomated segmentation using a level set-based method.Med Phys. 2011 May;38(5):2479-93. doi: 10.1118/1.3574887. Med Phys. 2011. PMID: 21776783
-
3D ultrasound analysis of carotid plaque volume and surface morphology.Ultrasonics. 2006 Dec 22;44 Suppl 1:e153-7. doi: 10.1016/j.ultras.2006.06.027. Epub 2006 Jun 30. Ultrasonics. 2006. PMID: 16844159
-
Tracking of carotid arteries in ultrasound images.Med Image Comput Comput Assist Interv. 2013;16(Pt 2):526-33. doi: 10.1007/978-3-642-40763-5_65. Med Image Comput Comput Assist Interv. 2013. PMID: 24579181
-
Three-Dimensional Ultrasound of Carotid Plaque.Neuroimaging Clin N Am. 2016 Feb;26(1):69-80. doi: 10.1016/j.nic.2015.09.006. Neuroimaging Clin N Am. 2016. PMID: 26610661 Review.
-
Ultrasound image segmentation and tissue characterization.Proc Inst Mech Eng H. 2010;224(2):307-16. doi: 10.1243/09544119JEIM604. Proc Inst Mech Eng H. 2010. PMID: 20349821 Review.
Cited by
-
Geometric consistency among atherosclerotic plaques in carotid arteries evaluated by multidimensional parameters.Heliyon. 2024 Sep 6;10(18):e37419. doi: 10.1016/j.heliyon.2024.e37419. eCollection 2024 Sep 30. Heliyon. 2024. PMID: 39309847 Free PMC article.
-
A review of ultrasound common carotid artery image and video segmentation techniques.Med Biol Eng Comput. 2014 Dec;52(12):1073-93. doi: 10.1007/s11517-014-1203-5. Epub 2014 Oct 5. Med Biol Eng Comput. 2014. PMID: 25284219
-
Three-Dimensional Echographic Evaluation of Carotid Artery Disease.J Cardiovasc Echogr. 2018 Oct-Dec;28(4):218-227. doi: 10.4103/jcecho.jcecho_57_18. J Cardiovasc Echogr. 2018. PMID: 30746325 Free PMC article. Review.
-
Secondary Stroke Prevention: Improving Diagnosis and Management with Newer Technologies.Transl Stroke Res. 2016 Dec;7(6):458-477. doi: 10.1007/s12975-016-0494-2. Epub 2016 Sep 2. Transl Stroke Res. 2016. PMID: 27586681 Review.
-
Fractal dimension based carotid plaque characterization from three-dimensional ultrasound images.Med Biol Eng Comput. 2019 Jan;57(1):135-146. doi: 10.1007/s11517-018-1865-5. Epub 2018 Jul 26. Med Biol Eng Comput. 2019. PMID: 30046955
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources