Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;9(9):e1003231.
doi: 10.1371/journal.pcbi.1003231. Epub 2013 Sep 19.

Predictive modeling of in vivo response to gemcitabine in pancreatic cancer

Affiliations

Predictive modeling of in vivo response to gemcitabine in pancreatic cancer

James J Lee et al. PLoS Comput Biol. 2013.

Abstract

A clear contradiction exists between cytotoxic in-vitro studies demonstrating effectiveness of Gemcitabine to curtail pancreatic cancer and in-vivo studies failing to show Gemcitabine as an effective treatment. The outcome of chemotherapy in metastatic stages, where surgery is no longer viable, shows a 5-year survival <5%. It is apparent that in-vitro experiments, no matter how well designed, may fail to adequately represent the complex in-vivo microenvironmental and phenotypic characteristics of the cancer, including cell proliferation and apoptosis. We evaluate in-vitro cytotoxic data as an indicator of in-vivo treatment success using a mathematical model of tumor growth based on a dimensionless formulation describing tumor biology. Inputs to the model are obtained under optimal drug exposure conditions in-vitro. The model incorporates heterogeneous cell proliferation and death caused by spatial diffusion gradients of oxygen/nutrients due to inefficient vascularization and abundant stroma, and thus is able to simulate the effect of the microenvironment as a barrier to effective nutrient and drug delivery. Analysis of the mathematical model indicates the pancreatic tumors to be mostly resistant to Gemcitabine treatment in-vivo. The model results are confirmed with experiments in live mice, which indicate uninhibited tumor proliferation and metastasis with Gemcitabine treatment. By extracting mathematical model parameter values for proliferation and death from monolayer in-vitro cytotoxicity experiments with pancreatic cancer cells, and simulating the effects of spatial diffusion, we use the model to predict the drug response in-vivo, beyond what would have been expected from sole consideration of the cancer intrinsic resistance. We conclude that this integrated experimental/computational approach may enhance understanding of pancreatic cancer behavior and its response to various chemotherapies, and, further, that such an approach could predict resistance based on pharmacokinetic measurements with the goal to maximize effective treatment strategies.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Gemcitabine toxicity in-vitro for MiaPaCa-2 and S2-VP10 pancreatic cell lines.
Viability for cells treated with varying concentrations of Gemcitabine was determined after 24 hours of drug exposure.
Figure 2
Figure 2. Calculation of MVD and Parameter A.
(A) Sample S2-VP10 histology slide stained for Factor VIII (40×). (B) Parameter A (non-dimensional) describing the relative strength of apoptosis calculated from in-vitro measurements as a function of gemcitabine concentration (and with extent of vascularization parameter B = 0.43).
Figure 3
Figure 3. Tumor growth (V/G) predicted by the mathematical model.
Simulated tumor growth ( Eq. 7 ) for radially symmetric (A) MiaPaCa-2 and (B) S2-VP10 in-vivo tumors after treatment beginning when radius R = 1.5 mm, taking into consideration diffusion gradients in 3D and a moderate extent of vascularization.
Figure 4
Figure 4. Measurement of tumor radii from bioluminescent imaging of untreated and gemcitabine-treated SCID mice.
Gompertz growth curves were fitted to these data to illustrate the tumor growth. (A) MiaPaCa-2 radii and fitting to Gompertz equations formula image (untreated) and formula image (treated). (B) Bioluminescence signal shown for representative mice with S2-VP20 tumors. (C) S2-VP10 radii and fitting to Gompertz equations formula image (untreated) and formula image (treated). (D) Bioluminescence signal shown for representative mice with S2-VP20 tumors. Error bars in (A) and (C) correspond to standard error of the mean.

Similar articles

Cited by

References

    1. Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, et al. (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15: 2403–2413. - PubMed
    1. Berlin JD, Catalano P, Thomas JP, Kugler JW, Haller DG, et al. (2002) Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol 20: 3270–3275. - PubMed
    1. Rocha Lima CM, Green MR, Rotche R, Miller WH Jr, Jeffrey GM, et al. (2004) Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol 22: 3776–3783. - PubMed
    1. Di Costanzo F, Carlini P, Doni L, Massidda B, Mattioli R, et al. (2005) Gemcitabine with or without continuous infusion 5-FU in advanced pancreatic cancer: a randomised phase II trial of the Italian Oncology Group for Clinical Research (GOIRC). Br J Cancer 93: 185–189. - PMC - PubMed
    1. Louvet C, Labianca R, Hammel P, Lledo G, Zampino MG, et al. (2005) Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a GERCOR and GISCAD phase III trial. J Clin Oncol 23: 3509–3516. - PubMed

Publication types