Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jul 15;55(3):497-504.
doi: 10.1111/j.1432-1033.1975.tb02187.x.

A kinetic study of mitochondrial calcium transport

Free article

A kinetic study of mitochondrial calcium transport

K C Reed et al. Eur J Biochem. .
Free article

Abstract

This report describes a kinetic analysis of energy-linked Ca2+ transport in rat liver mitochondria, in which a ruthenium red/EGTA [ethanedioxy-bis(ethylamine)-tetraacetic acid] quenching technique has been used to measure rates of 45Ca2+ transport. Accurately known concentrations of free 45Ca2+ were generated with Ca2+/nitrilotriacetic acids buffers for the determination of substrate/velocity relationships. The results show that the initial velocity of transport is a sigmoidal function of Ca2+ concentration (Hill coefficient = 1.7), the Km being 4 muM Ca4 at 0 degrees C and pH 7.4. These values for the Hill coefficient and the Km remain constant in the presence of up to 2 mM phosphate, but with 10 mM acetate both parameters are increased slightly. Both permeant acids increase the maximum velocity to an extent dependent on their concentration. The Ca2+-binding site(s) of the carrier contains a group ionizing at pH approximately 7.5 at 0 degrees C, which is functional in the dissociated state. The stimulatory effect of permeant acids is ascribed to their facilitating the release of Ca2+ from the carrier to the internal phase, an interpretation which is strengthened by the lack of effect of the permeant anion SCN- on Ca2+ transport. Studies on the time-course of Ca2+ uptake and of EFTA-induced Ca2+ efflux from pre-loaded mitochondria demonstrate the reversibility of the carrier in respiring mitochondria and the extent to which this property is influenced by permeant acids. These data are accommodated in a carrier mechanism based on electrophoretic transport of Ca2+ bound to pairs of interacting acidic sites.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources